
197 

Two-dimensional Homotopy 
and Combinatorial Group 
Theory 

Edited by 

Cynthia Hog-Angeloni, Wolfgang Metzler 

& Allan J. Sieradski 



LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical
Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

The books in the series listed below are available from booksellers, or, in case of difficulty,
from Cambridge University Press.

34 Representation theory of Lie groups, M.F. ATIYAH et al
36 Homological group theory, C.T.C. WALL (ed)
39 Affine sets and affine groups, D.G. NORTHCOTT
46 p-adic analysis: a short course on recent work, N. KOBLITZ
49 Finite geometries and designs, P. CAMERON, J.W.P. HIRSCHFELD & D.R. HUGHES (eds)
50 Commutator calculus and groups of homotopy classes, H.J. BAUES
57 Techniques of geometric topology, R.A. FENN
59 Applicable differential geometry, M. CRAMPIN & F.A.E. PIRANI
66 Several complex variables and complex manifolds II, M.J. FIELD
69 Representation theory, I.M. GELFAND et al
74 Symmetric designs: an algebraic approach, E.S. LANDER
76 Spectral theory of linear differential operators and comparison algebras, H.O. CORDES
77 Isolated singular points on complete intersections, E.J.N. LOOIJENGA
79 Probability, statistics and analysis, J.F.C. KINGMAN & G.E.H. REUTER (eds)
80 Introduction to the representation theory of compact and locally compact groups, A. ROBERT
81 Skew fields, P.K. DRAXL
82 Surveys in combinatorics, E.K. LLOYD (ed)
83 Homogeneous structures on Riemannian manifolds, F. TRICERRI & L. VANHECKE
86 Topological topics, I.M. JAMES (ed)
87 Surveys in set theory, A.R.D. MATHIAS (ed)
88 FPF ring theory, C. FAITH & S. PAGE
89 An F-space sampler, N.J. KALTON, N.T. PECK & J.W. ROBERTS
90 Polytopes and symmetry, S.A. ROBERTSON
91 Classgroups of group rings, M.J. TAYLOR
92 Representation of rings over skew fields, A.H. SCHOFIELD
93 Aspects of topology, I.M. JAMES & E.H. KRONHEIMER (eds)
94 Representations of general linear groups, G.D. JAMES
95 Low-dimensional topology 1982, R.A. FENN (ed)
96 Diophantine equations over function fields, R.C. MASON
97 Varieties of constructive mathematics, D.S. BRIDGES & F. RICHMAN
98 Localization in Noetherian rings, A.V. JATEGAONKAR
99 Methods of differential geometry in algebraic topology, M. KAROUBI & C. LERUSTE

100 Stopping time techniques for analysts and probabilists, L. EGGHE
101 Groups and geometry, ROGER C. LYNDON
103 Surveys in combinatorics 1985, I. ANDERSON (ed)
104 Elliptic structures on 3-manifolds, C.B. THOMAS
105 A local spectral theory for closed operators, I. ERDELYI & WANG SHENGWANG
106 Syzygies, E.G. EVANS & P. GRIFFITH
107 Compactification of Siegel moduli schemes, C-L. CHAI
108 Some topics in graph theory, H.P. YAP
109 Diophantine analysis, J. LOXTON & A. VAN DER POORTEN (eds)
110 An introduction to surreal numbers, H. GONSHOR
111 Analytical and geometric aspects of hyperbolic space, D.B.A. EPSTEIN (ed)
113 Lectures on the asymptotic theory of ideals, D. REES
114 Lectures on Bochner-Riesz means, K.M. DAVIS & Y-C. CHANG
115 An introduction to independence for analysts, H.G. DALES & W.H. WOODIN
116 Representations of algebras, P.J. WEBB (ed)
117 Homotopy theory, E. REES & J.D.S. JONES (eds)
118 Skew linear groups, M. SHIRVANI & B. WEHRFRITZ
119 Triangulated categories in the representation theory of finite-dimensional algebras, D. HAPPEL
121 Proceedings of Groups - St Andrews 1985, E. ROBERTSON & C. CAMPBELL (eds)
122 Non-classical continuum mechanics, R.J. KNOPS & A.A. LACEY (eds)
124 Lie groupoids and Lie algebroids in differential geometry, K. MACKENZIE
125 Commutator theory for congruence modular varieties, R. FREESE & R. MCKENZIE
126 Vander Corput's method of exponential sums, S.W. GRAHAM & G. KOLESNIK
127 New directions in dynamical systems, T.J. BEDFORD & J.W. SWIFT (eds)
128 Descriptive set theory and the structure of sets of uniqueness, A.S. KECHRIS & A. LOUVEAU
129 The subgroup structure of the finite classical groups, P.B. KLEIDMAN & M.W.LIEBECK



130 Model theory and modules, M. PREST
131 Algebraic, extremal & metric combinatorics, M-M. DEZA, P. FRANKL & I.G. ROSENBERG (eds)
132 Whitehead groups of finite groups, ROBERT OLIVER
133 Linear algebraic monoids, MOHAN S. PUTCHA
134 Number theory and dynamical systems, M. DODSON & J. VICKERS (eds)
135 Operator algebras and applications, 1, D. EVANS & M. TAKESAKI (eds)
136 Operator algebras and applications, 2, D. EVANS & M. TAKESAKI (eds)
137 Analysis at Urbana, I, E. BERKSON, T. PECK, & J. UHL (eds)
138 Analysis at Urbana, II, E. BERKSON, T. PECK, & J. UHL (eds)
139 Advances in homotopy theory, S. SALAMON, B. STEER & W. SUTHERLAND (eds)
140 Geometric aspects of Banach spaces, E.M. PEINADOR and A. RODES (eds)
141 Surveys in combinatorics 1989, J. SIEMONS (ed)
142 The geometry of jet bundles, D.J. SAUNDERS
143 The ergodic theory of discrete groups, PETER J. NICHOLLS
144 Introduction to uniform spaces, I.M. JAMES
145 Homological questions in local algebra, JAN R. STROOKER
146 Cohen-Macaulay modules over Cohen-Macaulay rings, Y. YOSHINO
147 Continuous and discrete modules, S.H. MOHAMED & BJ. MULLER
148 Helices and vector bundles, A.N. RUDAKOV et al
149 Solitons nonlinear evolution equations & inverse scattering, M. ABLOWITZ & P. CLARKSON
150 Geometry of low-dimensional manifolds 1, S. DONALDSON & C.B. THOMAS (eds)
151 Geometry of low-dimensional manifolds 2, S. DONALDSON & C.B. THOMAS (eds)
152 Oligomorphic permutation groups, P. CAMERON
153 L-functions and arithmetic, J. COATES & M.J. TAYLOR (eds)
154 Number theory and cryptography, J. LOXTON (ed)
155 Classification theories of polarized varieties, TAKAO FUJITA
156 Twistors in mathematics and physics, T.N. BAILEY & R.J. BASTON (eds)
157 Analytic pro-p groups, J.D. DIXON, M.P.F. DU SAUTOY, A. MANN & D. SEGAL
158 Geometry of Banach spaces, P.F.X. MULLER & W. SCHACHERMAYER (eds)
159 Groups St Andrews 1989 volume 1, C.M. CAMPBELL & E.F. ROBERTSON (eds)
160 Groups St Andrews 1989 volume 2, C.M. CAMPBELL & E.F. ROBERTSON (eds)
161 Lectures on block theory, BURKHARD KULSHAMMER
162 Harmonic analysis and representation theory for groups acting on homogeneous trees,

A. FIGA-TALAMANCA & C. NEBBIA
163 Topics in varieties of group representations, S.M. VOVSI
164 Quasi-symmetric designs, M.S. SHRIKANDE & S.S. SANE
165 Groups, combinatorics & geometry, M.W. LIEBECK & J. SAXL (eds)
166 Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
167 Stochastic analysis, M.T. BARLOW & N.H. BINGHAM (eds)
168 Representations of algebras, H. TACHIKAWA & S. BRENNER (eds)
169 Boolean function complexity, M.S. PATERSON (ed)
170 Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK
171 Squares, A.R. RAJWADE
172 Algebraic varieties, GEORGE R. KEMPF
173 Discrete groups and geometry, W.J. HARVEY & C. MACLAC14LAN (eds)
174 Lectures on mechanics, J.E. MARSDEN
175 Adams memorial symposium on algebraic topology 1, N. RAY & G. WALKER (eds)
176 Adams memorial symposium on algebraic topology 2, N. RAY & G. WALKER (eds)
177 Applications of categories in computer science, M.P. FOURMAN, P.T. JOHNSTONE,

& A.M. PITTS (eds)
178 Lower K- and L-theory, A. RANICKI
179 Complex projective geometry, G. ELLINGSRUD, C. PESKINE, G. SACCHIERO

& S.A. STROMME (eds)
180 Lectures on ergodic theory and Pesin theory on compact manifolds, M. POLLICOTT
181 Geometric group theory I, G.A. NIBLO & M.A. ROLLER (eds)
182 Geometric group theory II, G.A. NIBLO & M.A. ROLLER (eds)
183 Shintani zeta functions, A. YUKIE
184 Arithmetical functions, W. SCHWARZ & J. SPILKER
185 Representations of solvable groups, O. MANZ & T.R. WOLF
186 Complexity: knots, colourings and counting, D.J.A. WELSH
187 Surveys in combinatorics, 1993, K. WALKER (ed)
190 Polynomial invariants of finite groups, DJ. BENSON
191 Finite geometry and combinatorics, F. DE CLERCK et al
197 Two-dimensional homotopy and combinatorial group theory, C. HOG-ANGELONI

W. METZLER & A.J. SIERADSKI (eds)



London Mathematical Society Lecture Note Series. 197

Two-Dimensional Homotopy
and Combinatorial Group Theory

Edited by

Cynthia Hog-Angeloni
University of Frankfurt

Wolfgang Metzler
University of Frankfurt

and

Allan J. Sieradski
University of Oregon

CAMBRIDGE
UNIVERSITY PRESS



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1993

First published 1993

Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 44700 3 paperback

Transferred to digital printing 2004



Contents

Editors' Preface V

Addresses of Authors Vii

Geometric Aspects of Two-Dimensional Complexes 1

Cynthia Hog-Angeloni and Wolfgang Metzler

1 Complexes of Low Dimensions and Group Presentations . . . 1

2 Simple-Homotopy and Low Dimensions . . . . . . . . . . . . . 11

3 P.L. Embeddings of 2-Complexes into Manifolds . . . . . . . . 29

4 Three Conjectures and Further Problems . . . . . . . . . . . . 44

II Algebraic Topology for Two Dimensional Complexes 51

Allan J. Sieradski

1 Techniques in Homotopy . . . . . . . . . . . . . . . . . . . . . 51

2 Homotopy Groups for 2-Complexes . . . . . . . . . . . . . . . 62

3 Equivariant World for 2-Complexes . . . . . . . . . . . . . . . 75

4 Mac Lane-Whitehead Algebraic Types . . . . . . . . . . . . . 88

III Homotopy and Homology Classification of 2-Complexes 97

M. Paul Latiolais

1 Bias Invariant & Homology Classification . . . . . . . . . . . . 97

2 Classifications for Finite Abelian irl .. . . . . . . . .. . . . . 111

3 Classifications for Non-Finite 7r1 (with Cynthia Hog-Angeloni) 117

v



vi CONTENTS

IV Crossed Modules and 112 Homotopy Modules 125

Micheal N. Dyer

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2 Crossed and Precrossed Modules . . . . . . . . . . . . . . . . . 126

3 On the Second Homotopy Module of a 2-Complex . . . . . . . 140

4 Identity Properties . . . . . . . . . . . . . . . . . . . . . . . . 148

V Calculating Generators of 112 157

William A. Bogley and Steve J. Pride

1 The Theory of Pictures . . . . . . . . . . . . . . . . . . . . . . 157

2 Generation of H2 . . . . . . . . . . . . . . . . . . . . . . . . . 167

3 Applications and Results . . . . . . . . . . . . . . . . . . . . . 176

VI Applications of Diagrams to Decision Problems 189

Giinther Huck and Stephan Rosebrock

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 189

2 Decidability and Dehn's Algorithm . . . . . . . . . . . . . . . 190

3 Cayley Graph and van Kampen Diagrams . . . . . . . . . . . 192

4 Word Hyperbolic Groups and Combings . . . . . . . . . . . . 197

5 Curvature Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 203

VII Fox Ideals, A(-Torsion and Applications to Groups and
3-Manifolds 219

Martin Lustig

1 Fox ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

2 Applications of Fox ideals: Tests for the rank, the deficiency
and the homological dimension of a group . . . . . . . . . . . 225

3 JI-torsion: Basic theory . . . . . . . . . . . . . . . . . . . . . 230



CONTENTS vii

4 JV1(G), Nielsen equivalence of generating systems and Hee-
gaard splittings . . . . . . . . . . . . . . . . . . . . . . . . . . 233

5 N-torsion as generalization of the bias and (simple)-homotopy
of (G, m)-complexes . . . . . . . . . . . . . . . . . . . . . . . . 245

VIII (Singular) 3-Manifolds 251

Cynthia Hog-Angeloni and Allan J. Sieradski

1 3-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

2 Singular 3-Manifolds . . . . . . . . . . . . . . . . . . . . . . . 274

IX Cancellation Results for 2-Complexes and 4-Manifolds
and Some Applications 281

Ian Hambleton and Matthias Kreck

1 A Cancellation Theorem for 2-Complexes . . . . . . . . . . . . 281

2 Stable Classification of 4-Manifolds . . . . . . . . . . . . . . . 286

3 A Cancellation Theorem for Topological 4-Manifolds . . . . . 290

4 A Homotopy Non-Cancellation Theorem for Smooth
4-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

5 A Non-Cancellation Example for Simple-Homotopy Equivalent
Topological 4-Manifolds . . . . . . . . . . . . . . . . . . . . . 299

6 Application of Cancellation to Exotic Structures on
4-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

7 Topological Embeddings of 2-Spheres into 1-Connected
4-Manifolds and Pseudo-free Group Actions . . . . . . . . . . 305

X J. H. C. Whitehead's Asphericity Question 309

William A. Bogley

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

2 The Context of Whitehead's Question . . . . . . . . . . . . . . 310

3 Structural Results . . . . . . . . . . . . . . . . . . . . . . . . . 312

4 Reductions, Evidence and Test Cases . . . . . . . . . . . . . . 314



viii CONTENTS

5 On the 7rl-Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 320

6 Acyclic Coverings . . . . . . . . . . . . . . . . . . . . . . . . . 322

7 Finitely Generated Perfect Subgroups . . . . . . . . . . . . . . 326

8 Kaplansky's Theorem . . . . . . . . . . . . . . . . . . . . . . . 328

9 Framed Links . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

10 Open Questions (with J. Howie) . . . . . . . . . . . . . . . . . 333

XI Zeeman's Collapsing Conjecture 335

Sergei Matveev and Dale Rolfsen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

2 Collapsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

3 Some Special Ways of Collapsing P2 x I . . . . . . . . . . . . 339

4 1-Collapsibility Modulo 2-Expansions . . . . . . . . . . . . . . 348

5 Zeeman Conjecture for Special Polyhedra . . . . . . . . . . . . 349

6 Generalizing (Z) to Higher Dimensions . . . . . . . . . . . . . 361

7 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 363

XII The Andrews-Curtis Conjecture and its Generalizations 365

Cynthia Hog-Angeloni and Wolfgang Metzler

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

2 Strategies and Characterizations . . . . . . . . . . . . . . . . . 366

3 Q**-Transformations and Presentations of Free Products . . . 373

4 Some Further Results . . . . . . . . . . . . . . . . . . . . . . . 380

Bibliography 381

Index 408



Editors' Preface

It is well known that techniques developed for manifolds of higher dimensions
don't suffice to treat open problems in dimensions three and four. The lat-
ter are inextricably tied to questions about the (simple-) homotopy type of
2-skeleta or -spines of these low-dimensional manifolds and, hence, to presen-
tations of groups.

Basic work on two-dimensional homotopy dates back to K. Reidemeister and
J.H.C. Whitehead. For instance, Whitehead gave an algebraic description of
the homotopy type of 2-complexes. But, until the early 70's, one didn't have
examples of 2-complexes with different homotopy type but equal fundamen-
tal groups and Euler characteristic. Since then considerable advances have
been made, yielding, in particular, remarkable partial results on famous open
problems like Whitehead's question, whether subcomplexes of aspherical 2-
complexes are always aspherical themselves. The authors of this book have
contributed to this development.

Because of its relations to decision problems in combinatorial group theory,
two-dimensional homotopy probably will never take the shape of a complete
theory. However, the occurrence of certain notions (e.g., the Reidemeister-
Peiffer identities of presentations) in different questions is far from being
accidental. The time has come to collect the present knowledge in order to
stimulate further research.

This book contains the elements of both a textbook and a research mono-
graph, and, hence, addresses students as well as specialists. Parts of the
book have already been used to substantiate courses with concrete geomet-
ric and/or algebraic material. A student reader should know already some
(algebraic) topology and algebra. We start with two introductory chapters
on low-dimensional complexes. These are followed by chapters on prominent
techniques including their applications to manifolds. Concluding chapters
treat the present status of three famous conjectures (Whitehead, Zeeman,
Andrews-Curtis). The coherent organization of the book includes cross ref-
erences as well as a common index and an ample bibliography. But the
chapters can also be read independently; they range from an introduction to

ix



x

the specific topic(s) to a survey of latest results, with guidelines to the current
literature. Particular emphasis is placed on covering open problems.

This book project was initiated by Wolfgang Metzler and presented to the
majority of the authors at a workshop on Geometric Topology and Combina-
torial Group Theory held in Luttach/Southern Tyrol (Italy) in August 1991.
During this meeting, an approximate table of contents was developed.

The book demonstrates and documents mathematical cooperation.
We mention, in particular, long-term activities of Micheal Dyer, Allan Sier-
adski and their former students, of Wolfgang Metzler and his former students
and of Paul Latiolais' Fall Foliage Seminars, which have grown together in
recent years. In addition to personal contact, modern electronic communi-
cation of (drafts of) sections or whole chapters was a basic ingredient in the
production of manuscripts. This includes the illustrations that were based
on sketches of the authors and drawn by Allan Sieradski using the Postscript
drawing application Adobe Illustrator. The final layout was done by the
editors.

All chapters were refereed twice, according to the usual textbook/journal
standards, once by one or more member(s) of the team of authors, second
by an external referee who had the option of remaining anonymous. As no-
body chose to do so, we express our gratitude for their valuable service to:
Juan Alonso (Stockholm), Stefan Bauer (Gottingen), Gerhard Burde (Frank-
furt/Main), David Gillman (Los Angeles), Mauricio Gutierrez (Medford),
Jens Harlander (Frankfurt/Main), Wolfgang Heil (Tallahassee), James Howie
(Edinburgh), John Ratcliffe (Nashville), Nancy Waller (Portland) and Perrin
Wright (Tallahassee). With their help, we have, in particular, tried to avoid
mathematical and typographical errors. Our editorial efforts included elim-
inating conflicting use of terminology in different chapters; but we did not
insist on standardized notations.

We invite all readers to communicate any remaining errors to us; we are also
eager to learn about further progress on the mathematical substance of this
book, which might be integrated into revisions of the text.

Last, but not least, we want to thank Roger Astley and David Tranah of
Cambridge University Press for their continuous encouragement and advice
throughout the project.

Cynthia Hog-Angeloni, Wolfgang Metzler, Allan J. Sieradski

Brombach (Taunus)
August 1993
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Chapter I

Geometric Aspects of
Two-Dimensional Complexes

Cynthia Hog-Angeloni and Wolfgang Metzler

The aim of this introductory chapter is to provide a geometric background
for the algebra and homotopy theory to follow. We also focus on geometric
questions of intrinsic interest. The algebraic topology of later chapters is
meant to contribute to their understanding and treatment. What we present
is an extract of courses the authors have given on Low Dimensional Topology.
These courses were enriched by selected topics from further chapters of this
book and/or some of the material which this article only summarizes, together
with references to other sources.

1 Complexes of Low Dimensions and Group
Presentations

A crucial tool for dealing with geometric and homotopy theoretic problems in
topology is the decomposition of certain spaces into disjoint unions of cells e;`
of various dimensions, each (open) cell e; as a subspace being homeomorphic

to an open unit disc D" = {x E I[8" JxJ < 1}. Thus, we may obtain
the structure of a cell complex K for the underlying topological space JKJ.
We denote by K" (the n-skeleton) the subspace comprised of the cells of
K of dimensions < n with the induced cell structure. It is also standard
terminology to indicate by the superscript n of K" that K is a complex with

1



2 Hog-Angeloni/Metzler: L GEOMETRIC ASPECTS OF 2-COMPLEXES

cells of at most dimension n (sometimes it is required that there are n-cells
in an n-dimensional complex K).

The various notions of complexes differ by the conditions that are imposed
on the closure e; C IKI of a cell ei E K and/or the boundary 9ei = e, - ei.
These conditions also regulate how the cells are "glued" together to yield the
topology of JKJ.

We assume that the reader is familiar with simplical complexes (finite or
infinite). Here each closed cell ei is a union of cells and is homeomorphic to a
simplex with all its faces by a homeomorphism which maps open cells to open
cells. (A homeomorphism between cell-complexes which maps open cells to
open cells is called cellular or an isomorphism.) As a "gluing condition" one
mostly confines to the weak topology with respect to the e , i.e.,

(1) a subset of IKI is closed if its intersection with each e is closed.

Between 1939 and 1950, J.H.C. Whitehead published several papers which,
on one hand, contain masterpieces of simplical techniques. Some of these are
basic for our geometric questions and will be cited in several sections of this
article. On the other hand, Whitehead gradually was led to the insight that
many of his results in homotopy theory actually hold for a generalization of
simplicial complexes, where proofs and constructions can avoid a lot of hard
work (checking the strong conditions of simplicial complexes and maps). In
[Wh491], he introduced the notion of "CW-complexes," for which the assump-
tions on the 0ei are far less restrictive than in the simplicial case. We give
an inductive definition of CW-complexes which is particularly convenient in
low dimensions. For the equivalence to Whitehead's original definition, see
Schubert ([Schu64], III. 3, Exercise 1 and Sieradski ([Si92], Chapter 15).

1.1 Inductive construction of CW-complexes

Definition: A CW-complex K is a space JKJ with a cell decomposition,
whose skeleta are inductively constructed as follows:

(a) K° is a discrete space, each point being a 0-cell.

(b) K" is obtained by attaching to Kn-1 a disjoint family D° of closed
n-discs via continuous functions Vi : 0DL -1 -4 K"-1, i.e.: take the
topological sum K"-1 + ED!' and pass to the quotient space given

0

by the identifications x - (pi(x), x E OD!'. Each Dn then projects
homeomorphically to an n-cell e!'. (pi is called an attaching map for el`.
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00
(c) JKJ _ Yo IKnI is assigned the weak topology with respect to the e (as

in (1)).

More generally, a cell complex is called a CW-complex, if it is isomor-
phic to one obtained by the preceding constructions.

Remarks: (c) can be verified inductively for the skeleta (Exercise), hence
it holds automatically if K is of finite dimension. The "W" in CW is moti-
vated by Weak topology, the "C" (Closure finite) by the fact that each e is
contained in a finite union of cells (Exercise).

In contrast to the situation of simplicial complexes, a itself is not necessarily
a union of cells; see Figure 1, where c0e2 is a point of es, but not a 0-cell:

Figure 1.1.

The following facts on CW-complexes can also be found in [Schu64] and
[Si92]:

(2) A CW-complex K is finite (i.e., consists of finitely many cells) if IKI
is compact.

(3) A covering space of a CW-complex K can be (uniquely) decomposed as
a CW-complex k such that the projection map k -+ K sends each cell
e E K homeomorphically to a cell e E K. (Note that the corresponding
statement for closed cells is false in general, as the universal covering
space of Ss = e° U es shows.) An attaching map for e" is obtained
by appropriately lifting an attaching map : OD" -* K"-s of e" to

K"-s = p-s(Kn-s).

We will deal mainly with finite CW-complexes and infinite ones that arise as
covering complexes of (finite) complexes.

'Attaching maps in this general case are those of an isomorphic model according to
(a), (b), (c), composed with a cellular homeomorphism. We shall tacitly assume similar
extensions of definitions to be made later on. Note that specific attaching maps are not
considered data of the complex; compare § 2.1.



4 Hog-Angeloni/Metzler: I. GEOMETRIC ASPECTS OF 2-COMPLEXES

1.2 Questions of subdivision and triangulation

A 1-dimensional CW-complex is a graph. It may contain loops and more
than one edge between two vertices; but by introducing new vertices, it can
be subdivided2 to become simplicial (details left as an exercise):

Figure 1.2.

However, already in dimension 2 - due to the generality of attaching maps -
there exist nontriangulable CW-complexes: Consider the finite(!) 2-complex
K2 of Figure 3, an infinitely crumpled curtain with three 0-cells, three 1-cells
and one 2-cell, the attaching map of which oscillates on e1 l.

el2 e2

X, x x5

e2 e1 e°

Figure 1.3.

Note that all other marked points (e.g., the x;) and lines of the drawing don't
indicate further cells.

Theorem 1.1 The CW-complex K2 of Figure 3 is not homeomorphic to
any simplicial complex.

Proof: Triangulating appropriate neighbourhoods of the points x;, i = 1, 3, 5,
7,..., one obtains the local homology groups H2(IKI, IKI - {x;}) =
Z x ... x Z. The number of "sheets" of the curtain coming together at x,
(i-i) factors

2The general notion of subdivision for CW-complexes will be introduced below; see also
footnote 5.
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is thus seen to be an invariant of the local homeomorphism type of IKI at
xi : IKI has infinitely many distinct local homeomorphism types. Any trian-
gulation of JKJ would have to be finite, as 1K! is compact (see (2)). But a
finite simplicial complex has only finitely many local homeomorphism types,
given by the stars of the simplices. Thus no such triangulation exists.

In the beginning of this century, the "Hauptvermutung" of combinatorial
topology was raised, the question, whether homeomorphic simplicial com-
plexes are combinatorially equivalent (i.e., if they become isomorphic af-
ter simplicial subdivisions). The terminology naturally generalizes to CW-
complexes: A subdivision K' of a CW-complex K is a CW-complex K' with
JK'! = IKJ and the property that each cell e E K is the union of certain
cells e; E K. K and L are combinatorially equivalent, if they admit subdivi-
sions K' (of K) and L' (of L) which are isomorphic. But the answers to the
Hauptvermutung question are different in the simplicial and the CW-case:

After contributions of prominent mathematicians (e.g., Papakyriakopoulos,
Moise, Bing, Milnor, Stallings, Kirby, Siebenmann), the answer to the sim-
plicial Hauptvermutung is known to be "Yes" for (locally finite3 simplicial
complexes of) dimensions < 3; see [Br69], and "No" in dimensions > 4.
(Closed 4-manifolds with exotic differentiable structures were first exhibited
by M. Kreck [Kr842]; that such examples yield combinatorially distinct tri-
angulations follows from [Mu60] together with [Ce68]).

But the Hauptvermutung for CW-complexes fails already in dimension 2, as
the following example(s) will show:

Figure 1.4.

3A CW-complex is locally finite, if each point has a neighbourhood which meets only
finitely many cells. (For simplicial complexes, this is equivalent to saying that the star of
every simplex is finite (Exercise).) K is locally finite if SIC! is locally compact; see [Schu64].
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In Figure 4, K and L are finite CW-complexes with two 0-cells, three 1-
cells and two 2-cells. They differ in their dissection of IKI = ILI by the
middle 1-cell eK resp. el. The cell eK contains a sequence of (open) subin-
tervals, where four or six sheets of 2-dimensional material meet, the sequence
converging towards e2 alternatingly: 4,6,4,6,...; ei is defined by the broken
line and its periodic and shrinking continuation towards e2 with the "rhythm"
4,4,6,6,4,4,6,6.... of subintervals. It requires a little visualization to make
sure that for the resulting 2 -cells of L - above and below eL - none of the
CW-conditions are violated.

Theorem 1.2 K2 and L2 of Figure 4 are homeomorphic but combinatori-
ally inequivalent.

Proof: We use some easy facts on the sheets, which result from local homol-
ogy considerations as in the proof of Theorem 1.2.

a) Any subdivision K' of K, which is finite by (2), contains a 1-cell e%,
(the one adjacent to e2) characterized by the fact that almost all of the
4- and 6- sheeted subintervals are carried by it; L' analogously contains
an ei,.

b) Any homeomorphism of IKI to ILI(= IKI) must map a 4- resp. 6-
sheeted subinterval to a 4- resp. 6-sheeted subinterval. Remembering
a), a cellular homeomorphism of K' to L' thus in particular would have
to map a%, to ei,.

c) In eK - hence also in eK, - any two subintervals of type 4 are separated
by a type 6 subinterval (and vice versa), whereas the different "rhythm"
4,4,6,6,... in el implies that ei, contains adjacent subintervals of one
type without such a separation by one of the other type. The different
rhythms thus contradict the monotony of a potential homeomorphism
eK, to el,. Hence there is no cellular homeomorphism K' -+ L'. C1

We refer to [Me67] for further subdivision phenomena, for instance:

(4) The relation of combinatorial equivalence for CW-complexes is not tran-
sitive.

Geometric pathologies arising from general attaching maps don't deserve too
much interest of their own. But their occurrence either suggests the restriction
to piecewise linear CW-complexes (see 1.4 and § 3 below) or it forces specific
care in the proof of certain statements (see § 2.3 below).
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1.3 Reading off presentations for ir1 of a CW-complex

The following material may be found in many textbooks. Proofs are based
either on cellular/simplicial approximation (e.g., [Schu64]) or on the Seifert-
van Kampen theorem (e.g. [Ma67], [Si92]); see also Chapter II, § 1 and § 2.

(5) If K1 is connected4, select a vertex e° as a basepoint and a spanning tree,
i.e., a tree that consists of some edges and all vertices. Each remaining
edge e; , together with an orientation, determines a closed path from e°
as in Figure 5 (by connecting the initial and terminal vertex of e, with
e° on the tree). The elements ai of 7r1(IK1I, e°) given by these paths
constitute a free basis of 7ri (IK11, e°), i.e., irl (IK1 I, e°) is the free group
F(a;).

(Pi(*)

cp3{aD2)

Figure 1.5. Generating loops

(6)

(7)

Figure 1.6. Defining relations

If K2 is connected, select a basepoint, a spanning tree and paths a;
for the 1-skeleton as in (5). For each 2-cell e?, an attaching map
cpl : 8D2 -- K1, together with a base point *, an orientation of 8D2
and a connecting arc u from e° to cps(*) (as in Figure 6) defines an
element R; E 7rl(IK1I,e°) - a word R) in the a}1 - which is trivial in
7rl (IK2I, e°). Moreover, 7rl (IK1 I, e°) -* 7rl (IK2I, e°) is surjective with
the normal closure N(Rj) (j ranging over all 2-cells) as the kernel.

Thus 7rl (IK2I, e°) has the presentation (al, a2, ... IRI, R2, ...), i.e., the
fundamental group 1r1(IK2I, a°) is given by generators a, and defining
relations R. as the quotient F(ai)/N(R;).

If K has K2 as its 2-skeleton, then the natural map irl (IK2I, e°) -+
ir,(IKI,e°) is an isomorphism.

4A CW-complex is connected if its 1-skeleton is pathwise connected (Exercise).
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A crucial point of this chapter (and book) is that a finite, connected 2-complex
not only determines a fundamental group, but - via (6) - a certain class of
presentations, which doesn't contain all presentations of 1r1. Many homotopy
invariants can be derived from any member of this presentation class. The first
one to be mentioned is the Euler characteristic X(IKJ) = 1 - #(ai) + #(R;);
see § 2.3.

As an example, note that for a compact, connected and simply connected K2
the following statements are equivalent: (a) IKI is contractible (i.e., 1K! *);
(b) x(IKI) = 1; (c) H2(JKJ) = {0}; (d) the presentations read off from IKI
according to (6) are balanced, i.e., the number of defining relations equals the
number of generators (Exercise).

1.4 PLCW-complexes

In his papers [Wh39] and [Wh412], Whitehead didn't use general CW-com-
plexes, but he confined his attention to specific ones which still admit simplic-
ial5 subdivisions, so-called "membrane complexes". They combine the advan-
tage of a) providing complexes with "few cells" for a polyhedron with b) the
piecewise linear ( = p.l.) geometry, a main tool when embedding polyhedra
into manifolds; see § 3. We refer to [Hu69], [RoSa72] and [Ze63-66] for the
p.l. category, which is the proper home for simplicial theory when specific
triangulations become irrelevant. In this category, membrane complexes are
just what is given by the following definition:

Definition: A PL CW-complex is a locally finite CW-complex K together
with a p.l. structure for IKI such that

(a) all closed cells and all skeleta are subpolyhedra;

(b) K" is obtained from K"-1 by a family of p.l. attaching maps cpi
8D7 -+ Kn-1 such that each subpolyhedron ei U K"-1 is p.l. homeo-
morphic, rel. K"-1, to D2 U C(cpi), where C(Vi) is the p.l. mapping

ao;
cylinder of Vi.

Here D" is meant to be equipped with the p.l. structure given by a fixed
homeomorphism of D" to the n-cube I". b) involves results on p.l. map-
ping cylinders (existence, triangulations) which date back to [Wh39]; see the

5A simplicial subdivision K' of a CW-complex K is a subdivision of K by a simplicial
complex K'.
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discussion and the references in ([CoMeSa85], § 2). They yield, in particu-
lar, that by attaching finitely many n-cells to a PL CW-complex K"-1 via
p.l. attaching maps, the result naturally becomes a PL CW-complex. Hence
there is an inductive construction yielding finite PL CW-complexes. Exer-
cise: Derive concrete triangulations in the 2-dimensional cases (8), (9) which
follow.

Some classes of finite 2-dimensional PL CW-complexes:

(8) Reidemeister complexes (see [Re32]): For the construction of K2 from
K1, let each edge of K1 be equipped with a linear structure; each .9D?
is subdivided as a polygon; Vj : OD? -1 K1 maps each edge linearly
onto an edge of K1 or onto a vertex. cps thus defines a closed edge path
in K1. The notion of a Reidemeister complex agrees with the one of a
combinatorial CW-complex of dimension 2; see Chapter II, § 1.2.

After subdividing K1, any (finite) PL CW-complex becomes a Reide-
meister complex (Exercise). Simplicial 2-complexes are Reidemeister
complexes in which each triangle of a simplicial K1 may be filled in at
most once.

(9) Standard complexes of (finite) presentations: As an "inverse" process to
1.3, we may associate to a finite presentation P = (a,,. - -, a9 lR,, ... , Rh)
a Reidemeister-complex K-p with one vertex. Its 1-skeleton is a bouquet
of circles with an oriented e; for each ai:

e
a1

Figure 1.7.

The 2-cells e? correspond bijectively to the R3, which determine closed
edge paths cps as the corresponding attaching maps.

Note that the sequence R1, ... , Rh may contain repetitions and/or the trivial
word Rj = 1 E F(ai). Those relators nevertheless must not be suppressed
when constructing the standard complex Kp, which hence may contain differ-
ent 2-cells with the same boundary and/or closed 2-cells that are 2-spheres.

There is no general rule as to whether the R; are assumed to be (cyclically)
reduced or whether R; may contain adjacent inverse letters ai, ai 1. Reducing
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such "spurs" in the cpj does not affect the (simple-)homotopy type of KP,
see Lemma 2.1 of § 2.1 below; but it may drastically change the embedding
behavior of Kp into 4-space, see § 3.2 below.

Amongst the standard complexes are those for canonical dissections of closed
2-manifolds, ([Schu64], 111 5.8; [Si92], Chapter 13), but in general more than
two local sheets may meet at an el. It is nevertheless possible to apply
certain moves to finite 2-dimensional CW-complexes which reduce the local
complexity by achieving general position; see Ikeda [Ik71], Wright [Wr73],
[Wr77] and Remark 1 after the proof of Theorem 3.1 in § 3.1. The result is
a compact 2-dimensional polyhedron in which each point has a star of one of
the following p.l. types:

- -------------- -----------------Z
(a) (b) (c)

Figure I.B.

Such a polyhedron is called a closed fake surface; its intrinsic 2-skeleton
consists of points of type (a); type (b) resp. (c) defines the intrinsic 1-resp. 0-
skeletons. As closed 2-manifolds show, these intrinsic skeleta in general don't
dissect a closed fake surface into a cell complex. This additional requirement
gives rise to the following definition:

(10) A special (or: standard polyhedron) is a closed fake surface JKJ with
the property that the components of the intrinsic skeleta are the cells
of a PL CW-decomposition K (for the given p.l. structure) of JKJ.

Standard polyhedra are also Reidemeister complexes (Exercise).

In the literature, one sometimes has to deduce the precise meaning of "2-
complex" from the context; and if specific names are given, their meaning is
not always the same.

6Casler [Ca65] and Wright [Wr77] define the intrinsic 1-skeleton to consist of the points
of type (b) or (c); consequently, these authors don't introduce the separate notion of the
intrinsic 2-skeleton. Compare also the notions of Chapter XI, § 5.1.
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2 Simple-Homotopy and Low Dimensions

2.1 A survey on geometric simple-homotopy

Throughout this section, all spaces are assumed to be compact.

In the definition of a CW-complex in order to attach an n-cell e", we had
to form the quotient map p : K' 1 + D" -* K` U,e D' that identifies each
x E aDn with cp(x), where cp : aDn -+ K"-1 is the attaching map for en. The
restriction of p to Dn yields a characteristic map for en:

Definition: A map 4 : D" K is characteristic for an n-cell en of K if 4)
0

maps the interior Dn homeomorphically onto en and 4)J OD' is an attaching
map.

Note that attaching maps and characteristic maps are by no means unique.
In the case of characteristic maps, an easy example is obtained by a self-
homeomorphism of I" on the one hand and shrinking In -1 x ill in I" to
a point (while mapping the interior homeomorphically) on the other hand.
Nevertheless, it is true that

(lla) Exercise: Two attaching maps for an n-cell en are homotopic up to
composition with an orientation reversing map of aDn to itself.

(lib) Exercise: Two characteristic maps for en determine homotopic maps
(Dn, aDn) -+ (Kn, Kn-1) up to composition with an orientation revers-
ing homeomorphism of Dn to itself.

We now want to describe particularly simple operations which do not change
the homotopy type of a given complex L, namely the attaching of an n-ball
along an (n - 1)-ball in its boundary: (D', Dn-1) are assumed to form a
standard ball pair, i.e., a pair homeomorphic to (In-1 X I, In-1 x {1}). Let
(p: D' -+ L' 1 and define IKJ to be ILI U, Dn. Then (KJ has a natural cell
decomposition consisting of cells of L together with new e' and en-1, and the
associated characteristic map 4) : Dn -* K fulfills

(12) 4)jDn-1 maps to the subcomplex Ln-1 and?

(13) 4)laDn - Dn-1 is characteristic for en-1

7Equivalently, the roles of Dn-1 and ODn - Dn-1 could be interchanged simultaneously
in (12) and (13) which seems more adequate in some applications; see also Figure 9.
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This gives rise to the following

Definition: An elementary collapse (of dimension n) K \, L is the transition
from K to L if L is a subcomplex8 of K, K = L U en U en-1 where en, en-1 0 L
such that there exists a standard ball pair (Dn, Dn-1) and a characteristic map

e
: Dn --* K for en fulfilling (12) and (13)9. The inverse operation L 7 K is

called an elementary expansion (of dimension n):

Figure 1.9.

e e

Note that for K \ L (resp. K 7 L) there exists a (strong) deformation
e e

retraction (resp. the inclusion) from IKI to ILI. A sequence K 0 \ ... \ K.
is called a collapse Ko \, Km resp. an expansion Km / K0. K,,, is called a
spine of Ko. A sequence where both, collapses and expansions, are allowed, is
abbreviated by K0 ,'\ Km. IKoI and IKmI are then related by a deformation
defined to be a composition of retractions and inclusions as above. Sometimes
the maximal dimension of involved cells will be added in the notation and we

n
shall speak of an n-(dimensional) deformation Ko Km. Finally, we define
a simple-homotopy equivalence (in short: sh-equivalence) to be a map which
is homotopic to a deformation. This concept is due to J. H. C. Whitehead
[Wh50]; we also refer to [Co73].

The definition of an elementary collapse makes sense not only in the CW-
setting. For polyhedra K and L, D' is attached along a p.l. embedding cp;
hence IKI - ILI is a p.l. ball Dn, which has ILI n Dn as a face; compare
([RoSa72], Chapter III). If K and L are PLCW-complexes, a CW-collapse as
in the above definition is called a PLCW-collapse and induces a p.l. collapse
IKI N ILI; see ([CoMeSa85], Remark 4). Finally, if K and L are simplicial

8A subcomplex of a CW-complex K is a subset L of cells which constitutes a CW-
structure for the subspace ILI = Ue;, e; E L. This holds if F; C ILI for all e; E L. The
skeleta of a CW-complex are examples of subcomplexes.

e
9e' 1 is then called a free face of K. If en, en-1 E K and I{n-1 U en , Kn-1 - e' '

then en-1 is a free face of e". A free face of K is always a free face of the corresponding
en.
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complexes, e" and e"-1 are supposed to be (open) simplices; see [Hu69]. In all
these settings, the basic terms can be defined analogously and lead to a simple-
homotopy theory. The latter though, roughly speaking, turns out always to
be the same; see Proposition 2.3 and (18) below for a precise meaning when
comparing the CW with the PLCW setting; for CW versus polyhedra, we
refer to ([RoSa72], Appendix B5); polyhedra versus simplicial complexes see
([Hu69], Chapter II). To avoid confusion, we shall sometimes put a superscript
CW PLCW s
\,, \ \ , \, on the arrow to indicate the appropriate setting.

Returning to CW-complexes, we note that

(14) (Exercise:) the elementary steps in a deformation can be reordered (up
to isomorphism10 of the resulting complex) so that first all expansions
are done in increasing dimensions and then all collapses in decreasing
dimensions.

An important application of deformations arises when deforming the attach-
ing map of an n-cell to some n-complex:

Lemma 2.1 Let K be an n-dimensional complex and let cp Eli : S' ' -+ K
with cp(Sn-1), O(S'-1) C Kn-1 be attaching maps for n-cells en resp. e'. Set

n+1
K K Up Dn. Then K,p /\ K,.

Proof: Attach Sn-1 x I in the boundary of an (n + 1)-ball Dn x I via the
given homotopy H: S' 1 x I -+ K

Figure I.10.

and let Kn+1 = K UH (D" x I) be the resulting space with its naturally
induced cell decomposition. It has a single (n + 1)-cell with two free faces e,o

10The original deformation may remove and reintroduce certain material which, in the
resulting one, has to be formally separated.
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e e

and e,,. Then K,, ,l Kn+1 % Ky by a collapse through the top e, resp. the
bottom ep of the (n + 1)-cell.

Here, only one (n + 1)-cell is expanded to a CW-complex and collapsed im-
mediately afterwards. Such a deformation is called an (n + 1)-dimensional
exchange or transient move.

If we wish to do homotopies on attaching maps for cells of dimensions lower
than the one of the complex, the following lemma (on simple-homotopy ex-
tension) is useful:

Lemma 2.2 Let Kn be a finite CW-complex with m-skeleton K', m < n.
m+1

Then for a given deformation K' //\, Lm there exists a finite CW-complex
n+1

Ln with m-skeleton Lm such that Kn /\, Ln holds.

m+1
Proof: K'n /\ Lm yields a deformation Km / Pm+1 \ Lm such that a)
L''n is isomorphic to L"" and a) the (m + 1)-cells of P'n+l can also be ex-
panded to K'n+1 to result in Q'n+l; compare (14). But in general the collapse
corresponding to P"°+1 \,, L''n cannot be performed in Q'+1. Instead, using
the strong deformation retraction induced by the collapse Pm+1 \, L''n, re-
attach the (m + 1)-cells of Km+1 differently to P'n+l so that they avoid the
free m-faces of that collapse1. As the preceding lemma shows, the resulting
complex Q''"+1 can be obtained from Q'n+1 by an (m + 2)-deformation; and
afterwards the collapse Pm+1 \, Lm can be performed in Q'"`+1. In total,

we have constructed the sequence K'+' / Q'+'11^\, Qim+l \ L'm+1 where
L'"n+1 is the union of L'm and the re-attached (m + 1)-cells of Km+1 A
further (m + 2)-deformation of L m+l to an Lm+1 with m-skeleton L"' then
follows from disjointness considerations; compare [Co73], 5.2.b). The proof is
completed by an inductive application of this step.

The two lemmas together yield the

Proposition 2.3 Every n-dimensional finite CW-complex (n+ l)-deforms to
a PLCW-complex.

Proof: Assume that the m-skeleton of a given finite CW-complex K is al-
ready PLCW, which it is for m = 0. As long as m < n, deform the attaching
maps of the (m + 1)-cells to become p.1.. Let L'+1 be the PLCW-complex

"Attaching maps for the new (m + 1)-cells are thus given by those of Km+1 composed
with the deformation.
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obtained by attaching the (m+1)-cells via these p.l. maps to K"`. By Lemma
2.1, Km+1 (m+2)-deforms to Lm+1; by Lemma 2.2 this induces a deforma-

tion K%, L, where the (m+l)-skeleton L"`+1 of L now is a PLCW-complex.
0

(15) Similarly, we can apply an (n + 1)-deformation to standardize the 1-
skeleton of any finite connected CW-complex Kn to a bouquet of circles
(see § 1.4, Figure 7):

Attaching maps for 1-cells that are not in the spanning tree are always homo-
topic to the constant map to the basepoint, and when they are all deformed
away from the tree (except for the basepoint), the tree can be collapsed.
The two lemmas again convert this procedure into an (n + 1)-dimensional
deformation.

Each choice of p.l. approximations for attaching maps during the inductive
construction applied to K in the proof of Proposition 2.3, gives rise to a
PLCW-complex which will be called a PLCW-approximation of K.

(16) Exercise: Any two PLCW-approximations P, Q of a finite n-dimensional
n+1,PLCW

CW-complex K fulfill P Q.

e

(17) Exercise: Let K \ L where K and L are finite CW-complexes. Then
there are PLCW-approximations P resp. Q for K resp. L for which

e,PLCW
P \,, Q holds.

These two facts together imply that

(18) finite PLCW-complexes P, Q which are simple-homotopy equivalent in
the CW-sense, are related by a deformation where all intermediate steps
are PLCW:

In a deformation from P to Q that uses intermediate stages KZ, choose
PLCW-approximations P, for each K,. By (17), there are PLCW-approxima-
tions P', P'+1 for K, and K;+1 such that P' and P'+1 are related by an ele-
mentary collapse in the PLCW-sense. But then by (16), also P and Pi+i are
related by a deformation where all intermediate steps are PLCW.

Note that this procedure will in general raise the dimension of a deformation
by 1.
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In § 2.3 (Remark 2 after the proof of Theorem 2.4), we shall see that 2-
dimensional PLCW-complexes which 3-deform into each other in the CW-
sense, actually are related by a 3-dimensional PLCW-deformation.

The fundamental questions of simple-homotopy theory are, whether every ho-
motopy equivalence is simple or (if not) whether homotopy equivalent com-
plexes are always simple-homotopy equivalent. The answer to these questions
turns out to be different according to the dimension of the complexes:

(19) In dimension 1, using Nielsen's theorem [Ni19] on the decomposition of
automorphisms of free groups, we shall see in § 4.1 that in fact every
continuous map between finite, connected 1-complexes which induces
an isomorphism of fundamental groups is homotopic to a deformation
of dimension 2.

(20) For all dimensions > 3, there exist finite, connected complexes which are
homotopy equivalent but simple-homotopy distinct; see [Co73], 24.4.

(20) needs the algebraic theory of simple-homotopy, in particular the White-
head group Wh(ir) of a group ir; see [Wh50] and [Co73]. The first examples
arose in the p.l. classification of certain closed 3-manifolds, the lens spaces
(see § 3.1) and their higher dimensional analogues (Reidemeister [Re32] and
Franz [Fr35]).

In dimension 2, the one of our main interest, an additional difficulty is the
realization of the algebraic topological construction by different presentations
of the same group; compare § 4.4. Nevertheless

(21) there exist finite, connected 2-complexes which are homotopy equivalent
but simple-homotopy distinct (Metzler [Me90] and Lustig [Lu911]); see
Chapter VII, Theorem 3.2.

A related question is, whether finite, homeomorphic CW-complexes are of
the same simple-homotopy type. In the p.l. case for dimensions < 3, this is
a consequence of the Hauptvermutung (compare § 1.2) and the fact that

(22) a subdivision of a CW-complex can be realized by a deformation (The-
orem 12 of [Wh50] and [Co73], 25.1).

But the topological invariance of simple-homotopy type holds for arbitrary di-
mensions and CW-complexes12, which is a consequence of a famous Theorem
of Th. Chapman [Ch74] and J. West [We71]; see also [BrCo74]:

12 For dimension 2, this follows also from § 2.3, Theorem 2.7.



2. Simple-Homotopy and Low Dimensions 17

(23) If K and L are finite CW-complexes (resp. polyhedra) then f : K -* L
is a simple-homotopy equivalence if and only if f x IdQ : K x Q-* L x Q
is homotopic to a homeomorphism.

00
In (23), Q denotes the Hilbert cube II Ij.

i-1

On the other hand, collapsibility13 (even of PLCW-complexes) is not a topo-
logical invariant as long as subdividing is not allowed: Goodrick [Go68] has
given examples of triangulations of the topological n-ball for n > 3 which
are not simplicially collapsible. However, by Zeeman ([Ze63-66], Chapters I
and III), it follows that, for any triangulation of a topological n-ball, there is
an integer k such that the k-th barycentric subdivision of the triangulation
is simplicially collapsible. A result of Chillingworth ([Ch67], [Ch80]) shows
that simplicial collapsibility of complexes of dimension of at most 3 carries
over to subdivisions. Together with the Hauptvermutung, this implies that
a PLCW-complex that has dimension at most 3 and is topologically home-
omorphic to a collapsible PLCW-complex becomes (simplicially) collapsible
after subdivision.

2.2 Some examples

Every compact, connected n-dimensional p.l. manifold M with nonempty
boundary collapses to a spine of dimension < n - 1: Each (open) n-simplex
is accessible from OM by a path which misses the (n - 2)-skeleton. Thus all
n-simplices can be removed by collapses:

Figure I.11.

In some cases it may be necessary to do some expansions before getting
down to a "small" complex. In particular, contractible complexes K do not
necessarily collapse to a point.

13K is called collapsible, i.e., K if K has a spine which is a point.
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A famous example for this is the dunce hat H introduced by E. C. Zeeman
[Ze641]. It is the standard complex of the presentation (alaaa-1):

Figure 1.12. Dunce hat construction

The dunce hat doesn't allow any collapse, as each 1-cell locally bounds at
least two sheets. By use of local homology as in § 1, this "can't start"-
argument generalizes to any CW-decomposition of IHI and to the p.l. setting.
Nevertheless we will establish p.l. collapses

(24) IHI,IIHIxI\*
via suitable PLCW-decompositions and -collapses14 of IHI X I:

The collapse (I HI x I \, IHI) is obvious: I HI x I inherits a natural "cylindrical"
structure H x I from H which can be collapsed with decreasing dimensions
through the "tops" e" x {1} down to the "bottom" H x {0}. For the col-
lapse (IHI x I we subdivide H x I by a "slanted sheet" as in Figure 13
and collapse the 3-dimensional material from above and below; see Figure 14:

Figure 1.13. Figure 1.14

What is left, is the edge a of H, crossed with I, together with the sheet, the
slanted edges of which are identified:

14Later on we will be less strict with the notation, when p.1. collapses are applied to a
PLC W-complex.
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attachment lines

Figure I.15.

If in a next step we begin by collapsing through a x { 1 }

Figure 1.16.

and then through ({base point} x I), we get rid of all 2-dimensional material
of a x I. At this point, only the sheet is left over and can easily be collapsed
to the basepoint of H x {0}.

Even though the dunce hat embeds into 3-space, it is not quite easy to vi-
sualize. Bing's house, which is another example of a contractible but non-
collapsible complex, naturally occurs as a spine of the 3-ball:

Figure 1.17. Floors and panels of Bing's house; enter the bottom room from
the roof and the top room from below.
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We have given a modified version15 of Bing's house which has the further
advantage of being a special polyhedron.

The same "can't start"-argument as for the dunce hat implies the non-
collapsibility, while {Bing's house} / I3 \ * yields the contractibility.
Note that we have started with something obviously collapsible, namely the
3-ball, but one of the collapsing strategies "got stuck" : we ended up with
a 2-complex that doesn't have any free faces. One dimension lower though
in order to check the collapsibility of a complex K2, we can just do collapses
"helter-skelter" (R. Lickorish) and see whether eventually we come down to a

point. To see this, observe first that K" \ * implies that no collapsing strat-
egy gets stuck prior to the collapse of all of the highest dimensional material.
(A strategy that hasn't removed all n-cells yet, could be extended by the first
collapse of the remaining n-cells in the original strategy.) In particular, when
dealing with a collapsible 2-complex, any sequence of collapses can be contin-
ued until a graph is obtained. But a graph is contractible if and only if it is
collapsible namely if and only if it is a tree. This completes the argument.

2.3 3-deformation types and Q**-transformations

The process in § 1.3 to read off a presentation P = (a,,... , a9JR1,... , Rh)
for the fundamental group of a finite, connected CW-complex K2 involves
the choice of a spanning tree, base points, orientations, connecting arcs and
attaching maps. But different choices only amount to

(25) a) replacing an R; by wRtlw-1 for some w E F(ai) (compare Exer-
cise (11a) above on different attaching maps for a 2-cell eJ2), and

b) replacing the a, (in the R,) by the result of a change of basis16 or
of an isomorphism applied to F(at).

These modifications of P are among those that can be achieved using the
elementary transformations (26), (27), (28), which preserve (the isomorphism
type of) the group it = F(ai)/N(Rj):

(26) a) R; - wRjw-1 for some j and w E F(ai) (conjugation),
b) R3 -+ R.-1 for some j (inversion), and

"See [Co73] for the original design.
"If T and T' are two different spanning trees for K', then one can add to T an edge e1 in

T' -T and remove one of the T- V edges of the path which connects the distinct endpoints
of el in T. Finitely many such changes convert T into V. They yield concrete elementary
Nielsen transformations (compare (27)) which change the basis a; of 7r1(JK' ,e°) with
respect to T into a basis with respect to T'; see [Re32].
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c) R; -* R; Rk or Rk R; for some k j (multiplication on right or
left).

In each elementary step, the relators with an index # j remain un-
changed.

Definition: According to [Ra682], a finite sequence of moves of type (26) -
where j may vary - applied to a finite presentation P = (al, ... , a9 IRl, ... , Rh)
is called a Q-transformation. We speak of Q*- transformations if, in addition,
the following elementary operations are admitted:
(27) in the relators one replaces a= throughout by

a) aL or b) a;ak or c) aka;, k # i.
(An elementary operation consists of exactly one of the cases a) b) c).
The generators with index # i remain unchanged.)

The operations of type (27) generate all free (= Nielsen) transformations 17
see [Ni19].
Q**- transformations 18 are obtained if, moreover, we allow

(28) to enlarge P by a new generator a and a new relator R = a (prolonga-
tion), or to perform the inverse operation if the generator a appears in
no other relator than R = a.

The Q**-class of P is also called the presentation class of P and will be de-
noted by 4'(P).

Because of the remark leading to (25),

(29) a finite, connected CW-complex K2 determines a well defined presen-
tation class 4D(K2) of 7r = 7r1(IK21),

given by 4P(P) for any P which is read off from K2 according to
1.3.

But there is an even stronger connection between Q**-classes and geometry.
It is motivated by the (generalized) Andrews-Curtis problem which asks if
a simple-homotopy equivalence between finite 2-dimensional CW-complexes
K2, L2 can always be turned into a 3-deformation, i.e.,

3

(30) whether K2 /\,, L2 implies K 2 /\, L2; see § 4.1 below.

"In fact, c) and permutations of the ai can be effected by a) and b) (Exercise); inversion
and multiplication on one side likewise generate all transformations of the relators in (26)
c).

"Instead of Q**-transformations ([Me76] and [Me791]), [AnCu66] and [Cr791] use the
terminology extended Nielsen transformations.
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The central result of this subsection is that the 3-deformation types of com-
pact, connected 2-complexes bijectively correspond to presentation classes:

Theorem 2.4 The assignment K2 -+ induces a bijection between 3-
deformation types of compact, connected 2-dimensional CW-complexes and
Q**-classes of finite presentations, the inverse bijection being induced by as-
sociating to a finite presentation P its standard complex KP.

Remark: For the p.l. version of this result, see P. Wright [Wr75]; compare
also [Yo76]. In the CW-case we will have to deal with technical complications
arising from general attaching maps (see the proof of Lemma 2.6 below).

Proof of Theorem 2.4: A) We first consider the transition P -> KP. Note
that the operations (27) and (28) together allow

(31) to enlarge P by a new generator a and a new relator R = w-la (general-
ized prolongation), where w is a word in the original at', or to perform
the inverse operation (if possible).

Moreover, free transformations of the generators (27) can be replaced by
a) generalized prolongations and their inverses, and 3) Q-transformations
(Exercise). Thus we must only check the effect of a) and ,3) on the associated
standard complexes KP, KP,:

a) A generalized prolongation induces a 2-expansion from KP to KPH, its
inverse a 2-collapse.

,Q) An elementary Q-transformation replaces the attaching map of e (as-
sociated to R; in KP) by one for the 2-cell e'? corresponding to the
result of (26) a) b) or c). In each case, the attaching maps of e? and e'
are homotopic maps from S' to KP - {e?j = Kpi - {ej }. Hence, by

3
§ 2.1., Lemma 2.1, there is a transient 3-deformation KP /\ KP,.

With respect to later considerations, we note that in this transition from
presentation classes to 3-deformation types,

(32) all complexes, including the 3-dimensional intermediate stages of ,3),
can be assumed to be PLCW.

B) The direction K2 -* 4D(K2) will use two lemmas, the proofs of which
we postpone till after (34). The first one and its proof is a generalization of
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([Wr751, Lemma 2) to CW-complexes and arbitrary dimensions19:

Lemma 2.5 If a CW-complex K is transformed into L by expanding finitely
many (n+l)-cells e'+' (and their free faces) and afterwards collapsing these
e; +1 again (from potentially different free faces), then there is a transforma-
tion from K to L by finitely many transient (n+1)-moves.

This result will help to avoid an accumulation of 3-cells; see A) ,Q).

Lemma 2.6 If a connected CW- complex contains a 3-cell e3 with two different
free faces e2, e'2, then the process of reading off a presentation for 7r1 yields
relators R for e2, R' for ei2 which satisfy 20

(33) R = wR'tlw-1 . S,

where S is a consequence of those relators which correspond to 2-cells
in 9e3 - (e2 U e'2).

Continuing the proof of Theorem 2.4, let K2 and L2 be related by a 3-
deformation. Because of (14), we may assume K2 / K?, L; \, Lr2 where
K1 and L2 fulfill the hypothesis of Lemma 2.5 with n = 2, and L'2 is iso-

3

morphic to L2. Hence, there is a deformation K2 / K1 /A/\, L2 \ L'2, the
middle symbol indicating a sequence of transient 3-moves. By (25), we may
choose any spanning tree etc. when reading off presentation classes. Thus
in K2 / K1, an elementary 1-expansion may be taken to solely enlarge the
tree; for a 2-expansion the tree may be kept and the presentation may be
enlarged by a generalized prolongation.
Hence, we get 4 (K2) = 4P(K?) and likewise 4i(L2) = (b(Li2) = 4 (L2), the
last equality trivially holding because of the isomorphism between L'2 and
L2. We finish the argument by showing 4P(Kl) = (D(L?): If, in the chain
of transient 3-deformations from K? to L?, a 3-cell eq is collapsed from the
same free face that was used for its expansion, then the 2-complex hasn't
changed during this deformation; if the two free faces are different, then (33)
ensures that the corresponding relators before and afterwards differ by a Q-
transformation.

19An n-dimensional and simplicial version of Lemma 2.5 and Theorem 2.4 is given in
[KrMe83]. In our case n = 2, Lemma 2.5 can be replaced also by an algebraic argument
using Lemma 2.6; see [DeMe88l.

20By (25) above, an identity of type (33) is independent of the choice of geometric data
in § 1.3.
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C) If P is read off from K2, then the composed transitions K2 -+ P -+ KP
give rise to a 3-deformation: The contraction of a spanning tree of K2 can be
achieved by a 3-deformation (see (15) above) without changing the Ri to be
read off; the 2-cell corresponding to R1 can then be normalized to the one of
KP by an application of Lemma 2.1.

Once more we observe that

3

(34) if K2 is a PLCW-complex, then K2 /\, KP can be achieved by a
PLC W-3-deformation.

For the opposite direction of compositions, it is obvious that the data in read-
ing off a presentation from KP can be chosen such that P -+ KP -> P.

Hence the assignments K2 -+ 4 (K2) and P -- Kp induce inverse maps
between 3-deformation types of compact connected 2-dimensional CW-
complexes and Q**-classes of finite presentations.

Remarks: Using (32) and (34), it follows 1) that Theorem 2.4 is also true
in the PLCW-case; 2) (via the transition to presentation classes:) PLCW-

3
complexes K2 and L2 which fulfill as CW-complexes are already
related by a PLCW-3-deformation (compare (18) above). The latter holds
iff there exists a p.l. 3-deformation from IK21 to IL 21; see [Wr75].

Proof of Lemma 2.5: Let D be the given deformation from K to L. Enu-
merate the (n + 1)-cells ei+1, . . . , ek+1 in the order in which they appear in
D, and let e; denote the free face through which e; +1 is eventually collapsed.
Construct a transient deformation D' from K to L in the following manner:
When ei+1 is expanded in D, let it also be expanded in D' but immediately
collapsed via ei . Instead of expanding e2+1 in D, we expand e2 +1 (in D'),
which is obtained from e2+1 by identifying21 each point of ae2+1 fl en with
its image under a retraction map aei+1 -+ (8ei+1) - (ei). e2 must be a free
face of e2 +1: this could fail only if, in D both ei fl ae2+1 and e2 fl aei+l were
nonempty, which is impossible since it would block the collapse of ei+1 and
e2+1 in D. Collapse e2 +1 via e2.
Similarly, replace each subsequent e7+1 of D by e;"+1 in D', which is obtained
from e!'+' by dragging each point of 0e7+1 along previous retraction maps
of D'. e;"+1 can be collapsed immediately via e!', for otherwise there would
exist some "cycle" of nonempty intersections: e; fl ae +1 # 0, e fl ae 2 54
0, ... , e, fl ae; +1 # 0 with disjoint indices; and D could never have entered
the cells e; +1, e!'+1,...,0+1.

m
11

21 Similar quotients turn attaching/characteristic maps for e2+1 into analogous maps for
(a well defined) e2 +1, although different ones might he used for the expansion and the
collapse; see footnote 22.
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Proof of Lemma 2.6: By the freeness of e2 and e'2, we have characteristic
maps 4), fi' : I3 -+ e3 such that

(35) 4pl12 x {0} is characteristic for e2, 4)-1(e2) = I2 x {0};
4)'II2 x {1} is characteristic for e'2, 4'-1(e2) = I2 x {1}.

It would be easy to prove (33) if we could assume in addition that 4' equals
V. But in general flI2 x {1} and 4'II2 x {0} will not be injective. We use
homotopy considerations22 to bypass the problem of finding a characteristic
map for e3 which simultaneously establishes e2 and e'2 as free:

Select a point p of e'2. Although 4-1(p) in general will be different from a
single point, it is not hard to see that

(36) 4-1(p) is a compact, connected subset of al3 - (12 x {0}).
(Compare 4) and 4)', details left as an exercise.)

4)-1(p) then is contained in the interior M of a compact, connected(!) p.l.
submanifold M2 of al3 - (I2 x {0}), which fulfills 4)(M2) C e'2.

x {0

Figure 1.18.

As Dj(al3- M) : (19j3_ M) -+ V does not meet p, we can deform this
map rel. I2 x {0} to miss e2 entirely. This homotopy extends to a homotopy
of DjLI3, which maps M2 X I to e2 . Applying cellular approximation rel.
I2 x {0} ([Schu64], III. 3.5), we get an f : aI3 -+ 8e 3 such that

(37) a) f ^- D1873 rel. I2 x {0};

22The proof given here has been communicated privately since 1976; see ([Me791], foot-
note 2). R.A.Brown [Br92] established the existence of simultaneous characteristic maps
for free faces of CW-3-cells. The analogous question for faces of n-cells, n > 3, seems to
be open.
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0

b) f -l(e2) =I2 x {0} (this property can be preserved throughout the
deformation);

c) f-1(e'2) C M2 and f (M2) C F12;

d) f maps the 1-skeleton (according to Figure 19) of a CW-decomposi-
tion of aI3 to the portion of Oe3 that lies in the 1-skeleton.

Figure 1.19.

As all of OM is mapped to Oei2 by f , this cellular dissection of aI3 and (37)
give rise to an identity of the form23

(38) R = wR'l'w-1 S, -y E 7L,

with R, R', S having the same meaning as in (33). (In short: The connectivity
of 4>-1(p) and of M yields that there is only one "R'-patch" in (38).) But
f is homotopic to 4bIOI3; hence, y is the incidence number [e3, e'2], which is
independent of the characteristic map for e3; compare Chapter II, § 3. Using
'p', i.e., the freeness of e'2, we have y = [e3, ei2] = ±1.

Theorem 2.7 The presentation class 4k(K2) is an invariant of the homeo-
morphism type 24 of 1K21.

Proof: Let K2, L2 be finite, connected CW-complexes which are homeo-
morphic. Without loss of generality, we may assume IKI = ILI. Select a
finite number of points xi such that each 2-cell of K 2 and each 2-cell of L2
contains at least one xi, and none of the xi lies in IK11 U IL11. There also
exist pairwise disjoint 2-disc-neighbourhoods U(xi) which still don't meet the
1-skeleta. Define 9 to be IKI - U U (xi) = ILK - U U (xi).

i i

"Compare footnote 20.
"Compare (23) above. In the p.l. case, a proof of Theorem 2.7 could be based on the

Hauptvermutung; see § 1.2. But with respect to Theorem 1.2 of § 1.2, the CW-case also
has to take care of combinatorially distinct 2-complexes.
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Every 2-cell is punctured at least once; hence 7r1(J) is free (see below for a
concrete basis). We will show that

(39) by expressing the boundaries aU(xi) (L defining relators of a presenta-
tion) with respect to any25 basis (LI generators of the presentation) of
7r1(,7), we obtain a member of (D (K2).

As (39) symmetrically holds for 4'(L2) as well as for this yields
4) (K2) = ?(L2). Thus it suffices to prove (39):

Reindex the U(xi) such that e contains U(xj,l,... U(xj,k,)), k3 > 1. Subdi-
vide K2 by connecting the 9U(xj,,,) with aeJ2 according to Figure 20. This
figure also indicates further obvious notations.

Figure 1.20.

Note that 1r1(J) is freely generated by a basis of 7r1(Kl) together with the

aj,,,, v > 2. (To see this, collapse the eJ2 - vUl U(xj,) from aU(xjl)). With
respect to this basis the aU(xj,,,) give rise to the relators
ajl = Rj aj,ks ... a,2, aj,2i ... , aj,k,. Hence we have to show that the
presentation P = (7r1(K1) - basis, aj,,, (v > 2) 1 Rj a k ... a2, aj 2i ... , aj k)
(with j ranging over the 2-cells of K2) is Q**-equivalent to (the) one read off
from K2. But this follows from the chain of Q**-transformations

P -4 (7r1(K1) - basis, aj,,,(v > 1)IR2

(irk(K1) - basis, aj,,,(v > 1)lR3, aj,,,... , aj,k) -+ (7r1(K1) - basislRj). 0

25A different one would result in a Q* *-transformation of type (27).
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Discussion and Additions:

If one enlarges Q**-transformations by the elementary operation which allows
to pass from P = (al, ... , a.I R1i... , Rh) to P = (al, ... , ag)Rl,... , Rh, 1), or
to perform the inverse operation (if possible), then all26 Tietze transforma-
tions are obtained. By these it is possible to convert any two (finite) presenta-
tions of a given group 7r into each other (Exercise, Theorem of Tietze [Ti08]).
Q**-transformations, however, preserve the deficiency27 h - g of P, or, equiv-
alently, 3-deformations preserve the Euler characteristic x( I K2I) = 1 - g + h.
The theorem of Tietze yields that

(40) any two finite, connected CW-complexes K2 and L2 with isomorphic
3

fundamental groups fulfi1128 K2 V Sl V ... V Sk L2 V S, V ... V St for
suitably chosen finite numbers k, t of 2-spheres.

But until the mid seventies it was unknown, whether (a finitely presentable
group) ir and the deficiency together are sufficient to determine a presen-
tation class or not: Although an algebraic homotopy classification of finite,
connected 2-complexes had been obtained (see Chapter II, § 4), one didn't
have examples with K2 L2 but equal 7fl and X. Such examples were first
given by Dunwoody [Du76] and Metzler [Me76]; see also Sieradski [Si77].
A systematic treatment of this phenomenon is a main topic of Chapter III.
Presentation classes even contain genuine simple-homotopy information, as
simple-homotopy type and homotopy type differ already in dimension 2, see
the references given in (21) above. At the time of writing, only (30) con-
tributes a question mark in the following chain of implications:

(41)

K2
L2 ? ? K2 / L2 K2

L2

ir1(IK21) zz ir1(IL21) and X(IK21) = X(IL21),

where K2, L2 are finite, connected CW-complexes.

Because of (40), all distinguishing examples necessarily have a "small" Euler
characteristic; in many cases the minimal value of X is required; see Chapters
III, VII and IX.

"The usual list of Tietze transformations (generalized prolongation, adding an arbitrary
consequence of the R and the inverses of these operations) is easily seen to be equivalent
to this larger one; see the exercise after (31).

"Sometimes the deficiency is defined to be g - h.
28From this it can be deduced that there is no algorithm which decides whether two

arbitrary finite presentations are Q**-equivalent or not; see [Me85] and Chapter XII, § 2.1.
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Every finite, connected CW-complex K3 with K3 \, K2 determines a pre-
sentation class by defining 4)(K3) = -P(K2). It is well defined for, if L2 is
another 2-spine of K3, then K2 K3 \, L2 implies 4D(K2) = 4D(L2) (The-
orem 2.4). The analogous definition can be made in the p.l. case (see the
remarks following the proof of Theorem 2.4).

In particular, every compact, connected (p.l.) 3-manifold M3 with nonempty
boundary determines a presentation class 4D(M3). If aM = 0, we first re-

move the interior D3 of a p.l. 3-ball D3 in M3 and define 4D(M3) to be the0

presentation class of the complement. By connectedness this doesn't depend
on the choice of D3 ([He76], Th. 1.5) and, because of the Hauptvermutung
for 3-manifolds, 41)(M3) is a topological invariant. It may be considered as
the "algebraic essence" which remains when one "forgets" that relators live
on a surface (compare § 3.1 as well as Reidemeister [Re33] and Singer [Si33]).

Clearly

(42) J> (S3) = '(D3) = 4Do,

where is the class of the empty presentation or of a trivial presentation
(a,,...,a91al,...,a9).
Presentation classes ik and ' may be added by taking "disjoint" represen-
tatives (a;IRR), (bkISt) and passing to the class of (a;, bkI R;, Se). The sum
corresponds to the one-point union of 2-complexes and the free product of the
groups which are presented; see Chapter XII, § 3. Thus one gets an abelian
semigroup f of presentation classes with the neutral element 4'o. But several
interesting algebraic questions on this semigroup are still unsolved; see § 4.4.

3 P.L. Embeddings of 2-Complexes into Mani-
folds

If K is a subcomplex in the interior of a triangulated p.l. manifold M, then
a sufficiently small "regular" p.l. neighbourhood N(JKI) of K in M may be
obtained as follows: Thicken the 0-simplices to p.l. balls, and connect those
by "tubes", for which there is a connecting 1-simplex in K; see Figure 21.

The result is a "handlebody around" Kl. Continue to thicken, if K contains
simplices of dimensions > 2; see again Figure 21: they likewise give rise to
handles of corresponding indices > 2 which are attached inductively to the
boundary of the previous thickening.
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Figure 1.21.

This intuitive idea simultaneously leads to the theory of handlebodies (see
[Hu69], [Ki89] and [RoSa72]) and to Whitehead's theory of regular neigh-
bourhoods [Wh39]. Both will be needed in this section.

A formal definition of regular neighbourhoods may be given as follows:

Suppose X is a closed subpolyhedron of some polyhedron Y with triangula-
tions (L, K) for (Y, X). Let L" be a second derived subdivision of L inducing
the subdivision K" of K, and let N(L", K") be the simplicial neighbourhood
of K" in L", i.e., the union of all simplices of L" which have at least one
vertex in K", together with their faces. Then IN(L", K")l is called a regular
neigbourhood Ny (X) of X in Y.

We list some basic facts, for which we refer to Cohen [Co69] and [RoSa72];
see also [Ze63-66]. Rourke and Sanderson present a treatment of regular
neighbourhoods in (general) polyhedra based on [Co69]:

(43) Let N1, N2 be two regular neighbourhoods of X in Y. Then there exists
a p.l. homeomorphism h : Y -* Y with h(N1) = N2 and hjX = idx. If
X is compact, h has compact support.

(44) If X is a compact subpolyhedron of Y, then any regular neighbourhood
Ny(X) fulfills Ny(X) \, X.

Regular neighbourhoods of polyhedra in the interior of a p.l. manifold M are
themselves p.l. manifolds. An essential tool in this manifold case (compare
the handle idea above) is that

O

(45) if Y is a compact subpolyhedron of M and if Y \, X, then every regular
neighbourhood of Y is also a regular neighbourhood of X.
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In the case of X = *, (45) and (43) together yield Whitehead's characteriza-
tion of p.l. balls:

(46) A p.l. manifold collapses to a point if and only if it is a p.l. ball.

In fact, all regular neighbourhoods in the interior of a p.l. manifold M can
be characterized by a collapsing criterion:

(47) Let X be a compact subpolyhedron of M and let N CM be a polyhedral
neighbourhood of X. Then N is a regular neighbourhood of X iff

(i) N is a p.l. submanifold of M, and

(ii) N \ X.

A submanifold Fk C Mn is properly embedded if F fl am = OF. Cutting
along a properly embedded (n - 1)-dimensional submanifold is the same as
removing a regular neighbourhood of F and passing to M - N(F).

Throughout this section we confine ourselves to p.l. spaces and p.l. embed-
dings. All complexes are assumed to be compact, connected and PLCW.

3.1 3-dimensional thickenings

At the beginning of § 2.2 we saw that every (compact, connected, see above)
3-dimensional manifold M3 with boundary has a 2-dimensional spine K2.

The other way round, i.e., starting with a complex, several questions arise:

(48) Does K2 embed into the interior of some (orientable) (closed) 3-manifold?

(49) If so, are regular neighbourhoods ("thickenings") uniquely determined
by K2?

(50) If not, does there exist an L2 with L2 K2 (or L2 /\, K2, or L2 K2,
or with irl(K2) 7r1(L2)) such that L2 embeds in some 3-manifold?

The discussion of these questions is the main topic of this subsection29. For an
approach, we wish to visualize a manifold M3 (compact, connected, nonempty

29Throughout this subsection a) any spine of M3 will be assumed to be 2-dimensional
O

and to be contained in M, compare § 2.2 and [Ze641] (first collapse away an open collar
from the boundary); b) a handlebody always consists of one 0-handle and some 1-handles
(orientable or nonorientable); see [He76].
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boundary) by means of some spine K. Let P = (al, ... , aglRl,... , Rh) be
a presentation read off from K2. A regular neighbourhood of the 1-skeleton
of K2 in M3 is just a handlebody V, each 1-handle corresponding to an a=.
The boundary OV intersects K2 in a collection of pairwise disjoint simple
closed curves k;, namely the boundaries of the discs K2 - NK2(K') which
run around the handles according to Rj.

a

Figure 1.22. (V; k1i ... , kh); P = (a, bla3bab, a2b3)

These discs thicken to DJ2 x I, where 9DJ x I must be identified with a
neighbourhood of k3 in W. The resulting manifold is a regular neighbourhood
N(K2) of K2 in M3. But the p.l. type of M is also a regular neighbourhood of
K2 in M. This can be shown by addition of a collar to aM and application of
(47) (Exercise); compare footnote 32 below. Hence (43) implies that N(K2)
and M3 are p.l. homeomorphic: the tuple (V; k1, ... , kh) carries all of the
information about the manifold we started with30. A curve k in a surface is
2-sided if its regular neighbourhood is an annulus. We summarize:

(51) K2 with presentation (a,, ... , aglRi,... , Rh) has a 3-dimensional thick-
ening if and only if it is possible to draw 2-sided curves k; on the bound-
ary of a handlebody V with g handles, (one handle for each a;,) such
that k; reads R2 on V. 0

The reader who tries to use (51) to answer (48) for concrete examples, will
soon establish this question negatively. In fact, any spine can be altered by a
little 3-deformation to become non-thickenable; see Remark 2 after the proof
of Theorem 3.1.

Perhaps even more obvious is the observation that

30Each D? x I cuts an annulus out of OV and fills the resulting holes with discs. An
easy computation of the Euler-characteristic shows that if g = h, OM is connected, then
OM = S2, in which situation we can fill in a 3-ball to obtain a closed 3-manifold k3. The
tuple (V; k1, ... , kh) is then called a Heegaard-diagram of M3.
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(52) if K2 (p.l.) embeds into some M3, then the link (i.e., the boundary of
a regular neighbourhood) of each point must be planar.

In particular this test can be applied to the single vertex of a standard complex
Kp. Its link is called the link graph (or Whitehead graph) graph of K9 and
of P.

For a standard complex K2, L. Neuwirth [Ne68] exhibited an algorithm to
decide whether K2 is a spine of some orientable manifold; see also Chapter
VIII, § 1.3. Neuwirth's algorithm, which we are going to describe, is a refine-
ment of (52). We may assume that every 1-cell of K is incident with a 2-cell
and that every 2-cell is incident with some 1-cell because wedging on spheres
doesn't change the outcome of (48) (as opposed to that of (50)!).

Starting with a spine K2 of an orientable manifold M3 as above, using (51)
we obtain a tuple (V; k1i . . . , kh). Now cut each handle of V. The k; give rise
to arcs running on a sphere with 2g holes:

--------------------

Figure 1.23. (P as in Figure 22)

Here the eik (resp. eik) for k = 1, . . . , r(i) denote the intersection points of
the boundary of the thickened ith cutting disc with the curves kj. For each i,
they are assumed to be ordered clockwise (resp. counterclockwise) according
to an orientation of S2. The reader should verify that identifying Di with
Ti such that eik falls onto eik, converts Figure 23 into Figure 22. He should
further observe that prolonging the arcs (which have remained of the kj) to
the centers of the Di resp. Di, yields the link graph I' = K2 n 8NiM(vertex
of K2).



34 Hog-Angeloni/Metzler: I. GEOMETRIC ASPECTS OF 2-COMPLEXES

Following Neuwirth, let E denote the set consisting of all points eik and eik
and define permutations A and C by C := jj (eil ... and A

i=1
a product of disjoint transpositions interchanging the endpoints of the arcs.
If X is a permutation of E, denote by IXI the number of its cycles (orbits
in E). Note that ICI equals the number of vertices of r while IAA equals the
number of its edges. In the case of a connected r the number of components
of S2 - F equals JACI. Then the Euler formula yields

(53a) ICI - IAA + (ACI = 2.

If r has L components,

(53b) ICI - IAA + IACI = 2L

holds by summation over the components. Equation (53) assures that each
component of r is embedded on a 2-sphere. This description in terms of
permutations has the advantage that it can abstractly be read off from a
given presentation involving only a finite number of choices. Thus it tells us
whether the corresponding standard complex has a thickening or not: the
set E can be defined independently, each occurrence of an ai in some relator
defining an eik and an 'eik. For each adjacent pair at1, a;t1 of generators in a
cyclic relator we successively have to choose a pair (eik(i)ejk(y)),
(eik(i)eik(i)), (e;k(;)eik(j)) (bars according to the exponents of a, and aj) con-
stituting one of the disjoint transpositions of A. There are only finitely many
choices for each k. For a given A it can be checked whether (53) holds. It
has been proved above that if K2 is a spine, (53) is fulfilled. For proving the
converse, assume first L = 1. For any A which corresponds to the relations
of K2, the orbits of AC in E give rise to a surface built up from the Di and
Di together with labelled discs according to Figure 24.

Figure 1.24.

If (53) is fulfilled, the surface is a 2-sphere in which r embeds in a way that
allows the coherent identification of Di and Di. In the case L > 1 the same
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procedure applies to each component of r, yielding a collection of surfaces.
(53b) guarantees that each of these is a 2-sphere. This implies that again r
embeds in S2 in a way that permits the thickening of K2 to a 3-manifold.

Remarks: 1) By similar techniques, with the use of an additional permuta-
tion B, Neuwirth's algorithm is able to detect whether there is a thickening
of K2 whose boundary is a 2-sphere, thus answering (48) for being a spine of
a closed orientable 3-manifold; see [Ne68].
2) The interested reader may extend the algorithm to the nonorientable case.

We now turn our attention to question (49), to which the answer is also "no".
Counterexamples are provided by punctured lens spaces. These are closed
3-manifolds L(m, n) which have been introduced by Tietze 1908. They are
quotients of a lens shaped D3 with its hemispheres divided into m equal
sectors,

( qD
Figure 1.25.

where the upper hemisphere is identified with the lower hemisphere after a
twist of 21r

m;
(m, n) = 1. By Alexander [A119] (compare Stillwell [St80],

8.3.5), L(5, 1) and L(5,2) are not homeomorphic, a fact that is not changed
after removing the interior of a p.l. 3-ball. But a little ball missing in the
center of the lens can be enlarged to hollow out all of the 3-material. Now
each point below the equator is identified to some point above the equator,
hence our spine is the quotient of the upper hemisphere modulo the identifi-
cations on the equator. To see what these are, consider the oriented edges on
the equators. Since m and n are relatively prime, the 2ir

m
- twist acts tran-

sitively on them. Thus we see that the punctured lens space L(m, n) - D3
collapses to the standard complex of (alam) independently of n even though
the homeomorphism type in general differs for different choices of n.

For examples of non-homeomorphic knot spaces with a common spine com-
pare Mitchel, Przyticki and Repovs [MiPrRe86].

On the other hand, question (49) has a positive answer for the restricted class
of special polyhedra. The following theorem is essentially due to B.G. Casler
[Ca65]; compare also Wright [Wr77] for (a) and Quinn [Qu81] for (b).
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Theorem 3.1

(a) Every compact, connected 3-manifold with nonempty boundary has a
spine which is a special polyhedron.

(b) A special polyhedron thickens to at most one 3-manifold.

Proof of (a): The proof works with the "banana and pineapple trick" (compare
[Ze63-66], Chapter III, Remark 2): Let K2 / M3 be a spine. In M3, thicken
edges of K2 to sufficiently small, disjoint "bananas"; see Figure 26 (a):

Figure 1.26. (a) "banana" Figure 1.26 (b) "pineapple"

As K2 U { bananas } collapses to the M3-spine K2, Corollary 4 of [Ze63-66],
Chapter III yields:

(54) M3 \ K2 U { bananas }.

This may also be obtained by stopping certain original collapses earlier (i.e.,
at the bananas); compare [Co77], 3.1. By collapsing each banana through a
longitudinal piece of the peel, we get M3 \, K12, where Kl has the property
that at most 3 sheets meet at every edge. Next thicken vertices of K, to
sufficiently small, disjoint "pineapples", and apply the same argument(s) as
for (54) to this pineapple situation; then collapse each pineapple through a
piece of the pineapple peel; see Figure 26 (b). Continue to collapse until
no further collapses are possible. The resulting K2 is a spine of M3 which
consists of the union of a closed fake surface L2 and a graph G. By further
modifications as above, we may assume that G intersects L2 in points of the
intrinsic 2-skeleton of L2.
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If L2 # 0, thicken each component of G to a handlebody as in Figure 27.
Collapse the interior of each handlebody minus a meridian disc per 1-handle
through a disc of intersection with L2; see Figure 27:

Figure 1.27.

We end up with a closed fake surface K. Again M3 K3 holds.

The case L2 = 0 can be treated by first creating a Bing's house according to
Figure 17 near a vertex of G (Exercise).

By similar modifications, K3 now can be changed into a special polyhedron
which is a spine of M3:

If K3 is not a 2-manifold, choose a collection of disjoint arcs whose endpoints
lie in the intrinsic 1-skeleton of K3 while their interior runs in the intrinsic
2-skeleton of K. Each circle component of the intrinsic 1-skeleton should be
hit by an endpoint of some arc and the components of the intrinsic 2-skeleton
of K3 should be dissected into discs. Now thicken all these arcs to disjoint
cylinders and collapse through one end.

In the case of a 2-manifold, again create a Bing's house as shown in Figure
17 on it, and then proceed as above.

Proof of (b): We will show that K uniquely determines its regular neigh-
bourhood in M3; by the argument preceding (51) this is p.l. homeomorphic
to M3.

Let K be a special polyhedron and let No be a regular neighbourhood of the
intrinsic 0-skeleton in K. Components of No are homeomorphic to the cone
on the 1-skeleton of a tetrahedron which thickens uniquely by including the
cone on the entire tetrahedron. Denote this thickening of the 0-skeleton by
To. Next, let Nl be a regular neighbourhood in K of the intrinsic 1-skeleton.
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To U N1 can be described as To with copies of Y x I (where Y denotes the
cone on 3 points) attached by embeddings Y x {0, 1} C &To:

10

----------------------------------

VY Ni intrinsic
1-skeleton

Figure 1.28.

Copies of Y x I uniquely thicken to copies of D2 x I that are attached to To by
the unique (up to isotopy) extension of the above embeddings to D2 x 10, 11.
Denote the resulting thickening of the intrinsic 1- and 0-skeleton of K by
Ti. Now T1 U K is just the handlebody T1 with a collection of discs D?
attached along their boundaries. These discs uniquely thicken to balls D2

X

I
which have to be attached along the annulus 8D? x I. This is precisely
where an attempt to thicken K may run into an obstacle: some 8D; could
have a Moebius strip as a regular neighbourhood on 0Ti, in which case it
is impossible to thicken D?. The D? x I can be expanded if and only if
all 8D? are two-sided on 0T1. But then there are only two isotopy classes
for the extension of the embeddings 8D, C OT1 to OD? x I. They differ by
multiplication with (-1) in the I-factor, which extends to all of D? x I thus
yielding homeomorphic thickenings.

Remarks: 1) Every compact K2 3-deforms to a special polyhedron [Wr73]:
The steps in the above proof of a) can be mimicked to work in the absence
of a surrounding 3-manifold. Note that however, for the application of the
"pineapple-trick", the regular neighbourhoods of the vertices must first be
prepared to have a planar boundary graph (Exercise).
2) The above methods of proof show how a special spine (i.e., a spine which
is a special polyhedron) K2 of M3 can be altered by a local modification to
become non-thickenable: in the neighbourhood of some point of the intrinsic
1-skeleton deform one of the 3 sheets by adding a little loop:

Figure 1.29.
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This can be achieved by a 3-deformation of K (Exercise, use § 2, Lemma
2.1). Following the permutation of the sheets along the loop shows that the
corresponding handle is a solid Klein bottle. Hence the boundary curve of
the enclosed disc D has a Moebius strip as a regular neighbourhood on the
boundary of the Klein bottle whence it is impossible to thicken D.

For all special polyhedra, a 3-dimensional thickening can be achieved which is
only slightly more general than a 3-manifold. This notion is due to F. Quinn
[Qu81]:

Definition: A singular 3-manifold M3 is a compact connected polyhedron
in which the link of each point is D2 (boundary point), S2 (inner point) or the
projective plane p2 (singular point). The set of boundary points is assumed
to be nonempty.

Now turn back to the "bad" situation of part (b) in the proof of Theorem
3.1, when we had a Moebius strip on UTl with some aD, as its center line. In
this case we glue a further disc into the boundary curve of the Moebius strip

O

and then cone the resulting projective plane P2 to some centerpoint c2 ED?.
The subcone over aD? is (identified with) the disc D?. Note that all points
different from the c2 have manifold-neighbourhoods. It is possible to collapse
c2 F 2 to the Moebius strip plus the subcone over its center line. The other
way round, the c2 P2 can actually be obtained by expansions on Tl U K. Hav-
ing done this for all those aD? C UTl for which D? could not be thickened
to D; x I, we get a well defined thickening k3 = M3(K2) (compare [Qu81]):

Theorem 3.2 Every special polyhedron K2 determines a singular 3-manifold
k3 (K') K2 such that k3(K2) \, K2.

A corresponding modification of the proof of Theorem 3.1 (a) yields that
special spines also exist for singular 3-manifolds (Exercise, consider in addi-
tion "pineapples" which are cones on projective planes.). In Chapter VIII,
§ 2.1 it will be shown that these transitions from singular 3-manifolds to spe-
cial polyhedra and vice versa induce inverse bijections between presentation
classes and equivalence classes of singular 3-manifolds under certain elemen-
tary surgery moves.

Finally we consider questions (50). Again, in general the answer is already
"no" for the weakest condition. This leads to the question
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(55) what (finitely presented) groups can occur as fundamental groups of
3-manifolds.

For instance, in Hempel's book ([He76], Chapter 9) there is a complete list of
the abelian groups which arise as fundamental groups of 3-manifolds; among
(nontrivial) finitely generated abelian groups there are only
Z, Z ® Z, Z ® Z ® Z, 7G and Z ® Z2. The subcase of closed, orientable 3-
manifolds (cyclic groups, Z ® Z ® 7G) is due to Reidemeister [Re36].

Stallings has shown [St62] that there is no algorithm to decide whether a
given presentation determines a 3-manifold group.

Thus for the remainder of questions (50), we need at least to add the assump-
tion that the underlying group is a 3-manifold group. Still then there are
homotopy types which nevertheless don't contain an embeddable 2-complex;
see [HoLuMe85], where it is shown that Dunwoody's exotic presentation of
the trefoil group [Du76] defines a K2 which is not homotopy equivalent to
any 3-manifold spine.

It is not known to the authors whether there are different simple homotopy
types which coincide as homotopy types one of which embeds whereas the
other doesn't.

For further material on (singular) 3-manifolds, we refer to Chapter VIII and
XII.

3.2 4- and 5-dimensional thickenings

We present some relevant examples and basic facts. The arguments which
are given use handlebody and regular neighbourhood theory.

In § 2.2 it was already mentioned that the dunce hat H embeds in ]R3. Taking
a regular neighbourhood N3(H) with respect to such an embedding, we may
form N3(H) x I which fulfills N3(H) x I \, H x {2}. By (47) this implies
that N4(H) = N3(H) x I is a 4-dimensional regular neighbourhood of H in
R4, where H is embedded as H x I!} } C N3 x I C R4. But we also have
N3(H) x I \, H x I the last collapse given by (24). Hence, because of
(47),

(56) H has a 4-dimensional regular neighbourhood N4(H) which is a p.l.
4-ball.

(Alternatively, one can deduce (56) by establishing N3(H) to be a 3-ball.)
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As H itself is contractible but not collapsible, one may ask whether there
exist regular neighbourhoods of H in the interior of p.l. 4-manifolds which
are different from a 4-ball. Indeed, such an example was given by B. Mazur
[Ma61]; see also [Ze641]. It is constructed as follows:

Attach a 1-handle to D4. The boundary is the double31 of a solid 3-dimensional
torus T. Attach a 2-handle along the curve k C T as in Figure 30:

Figure 1.30.

In order to determine the 2-handle, one has to choose in addition a curve
k' "following" k in the boundary of a regular neighbourhood of k in T, the
difference between two choices (up to isotopy) being their twisting around k;
see Figure 31.

Figure 1.31.

This framing curve k' bounds a 2-disc in the portion of the 2-handle which
lies in the boundary of the resulting 4-manifold M4 (H).

As k approximates the attaching map of the 2-cell of H, it follows (see [Ze641])
that

(57) the dunce hat H is a spine32 of M4(H).

31The double 2M of a manifold M with nonempty boundary is obtained by taking two
copies of M and identifying corresponding points of their boundaries.

32That M4(H) occurs as a regular neighbourhood of H in the interior of some p.l. 4-
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But, by a particular choice of k' (namely the one "parallel" to k according to
the projection of k in Figure 30), Mazur obtained33 7r1 (0M4) $ {1}. Hence

(58) this Mazur-manifold is different from D4.

The following considerations reveal that linking phenomena as in Figure 30
are the essential obstruction to proving that, for 4)(K2) = 4bo, a regular
neighbourhood N4(K2) in the interior of some p.l. 4-manifold is a p.l. 4-ball:

Let N4(K2) be such a regular neighbourhood. Without loss of generality we
may assume K2 to be simplicial, hence N4(K2) has a handle structure34 given
by thickening the simplices of K2. Choose a spanning tree for K1 to read off
a presentation P. As (P(P) = 4)0 holds, a presentation Q which is obtained
from P by generalized prolongations, Q-transforms to a trivial presentation
R = (al, ... , a9Ia1i . . . , a9); compare the exercise after (31).

Unite the handles along the spanning tree to one 0-handle and introduce
handles according to the (generalized) prolongations to form Q, see [RoSa72],
p. 79; this yields a new handle structure on N4(K2). The boundary of the
union of the 0-handle and the 1-handles is the double of a solid 3-dimensional
handlebody; see Figure 32.

Figure 1.32.

The 2-handle attaching curves of the handle structure of N4(K2) according to
Q approximate the relator words of Q by running through the 1-handle parts
of Figure 32. We now apply the elementary Q-transformations from Q to
R, leading to further handle structures of N4(K2): conjugation of a relator
corresponds to an isotopy of an attaching curve; inversion doesn't change
the curves at all; multiplication of relators corresponds to 2-handle addition

manifold can then be seen by addition of a collar to 8M4 and application of (47); compare
the exercise preceding (51).

"The presentation for al(0M4) of [Ma61] can be verified by use of the Wirtinger method
and the Seifert-van Kampen Theorem (Exercise).

34A11 handlebodies arising in the following considerations will be orientable because of
-1 (K') = {1}.
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([RoSa72], p.50), which means the changing of the attaching curve of a 2-
handle by connecting it with a narrow band to the framing curve of another
2-handle (for details see [Ki89], pp. 10-11). One of the attaching curves in
Figure 32 is obtained in such a way (the arrow indicating the change). In
general these moves produce linking and knotting of the curves. The linking
and knotting may be concentrated in the 0-handle part according to Figure
32 such that the relator words run "parallel" through the 1-handle parts; but
it may block isotopies for free reductions to obtain the relator words of R
(and already for intermediate stages between Q and R) as in the case of the
dunce hat; see Figure 30.

This potential obstruction to N4(K2) being a 4-ball may be turned positively:
Define a 2-dimensional CW-complex to be a generalized dunce hat, if it is the
standard complex of a presentation (al, ... , a9IR1, ... , R9), the relators of
which may be non-reduced, but such that each R3 freely reduces to aj. Then
the above considerations yield (compare [Me85] and [Hu90]):

Theorem 3.3 If 4;(IK2I) = 4?o, then a regular neighbourhood N4(IK2I) of
a compact, connected subpolyhedron IK21 in a P.I. 4-manifold 35 M already
occurs as a regular neighbourhood of a generalized dunce hat in M.

The arguments for proving Theorem 3.3 can be "copied" one dimension
higher; in addition, the linking obstructions against free reductions of at-
taching curves vanish: N5(K2) thus turns out to be a 5-dimensional regular
neighbourhood of the collapsible PLCW-complex KR. Hence, (44) and (46)
together imply that N5(K2) is a p.l. 5-ball (Andrews and Curtis [AnCu65];
see also [Yo76]):

Theorem 3.4 If 1K21 is a compact, connected subpolyhedron of a p.l. 5-
manifold M, and if'(1K21) = (Do holds, then any36 regular neighbourhood
N5(IK21) of I K21 in M is a p. 1. 5-ball.

Theorem 3.4 has the immediate consequence:

(59) If 4;(IK21) = 4;o, then the double 2N4 of an N4(K2) is p.l. homeomor-
phic to S4,

"The general case can be reduced to the case IK21 CM by addition of a collar to OM;
compare footnote 32.

36Compare the preceding footnote.
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as N4 x I may serve as an N5(K2) and O(N4 X I) is p.l. homeomorphic to
2N4. In particular, although (58) holds, we have:

(60) The double of the Mazur-manifold is p.l. homeomorphic to S4.

In this case, the conclusion of Theorem 3.4 for M4 x I alternatively could be
deduced from the collapses M4 x I \, H x I \ *; compare (56) above.

We remark that for an arbitrary compact contractible polyhedron 1K21 (i.e.,
without the assumption 4P(IK2I) = Freedman's work [Fr82] yields the
conclusions of Theorem 3.4 and of (59) in the topological category (see [Me85],
footnote p.36).

By thickening the simplices of a triangulation (remember the construction of
the Mazur-manifold), every compact, connected polyhedron 1K21 can be p.1.
embedded into the interior of some p.1. 4-manifold. As opposed to the 3-
dimensional situation, the multitude (not the existence) of regular manifold
neighbourhoods is the central topic in dimension 4. But embeddings37 into
R4 resp. S4 do not always exist; the first examples (finite, connected 2-
complexes which generalize the nonplanar Kuratowski graphs) are due to van
Kampen [vK32]. Standard complexes of finite presentations embed into S4; in
fact, G. Huck [Hu90] has constructed embeddings with "nice" complements;
his method easily generalizes to an embedding of every finite, 2-dimensional
PLCW-complex K2 into S4, if K2 has a planar 1-skeleton.

In contrast, there may occur rather "complicated" complements for embed-
dings of a given 2-complex into S4: by J.P. Neuzil [Ne73] and B.M. Freed
[Fr76], the dunce hat H embeds into S4 in infinitely many distinct ways, dis-
tinguished by the fundamental groups of the complements.

We also recommend the study of Akbulut-Kirby [AkKi85], Gompf [Go91] and
of Chapter IX of this book as important completions to this section.

4 Three Conjectures and Further Problems

Low dimensional topology carries many unsolved problems. We first intro-
duce three prominent ones, each of which will be the topic of a separate
chapter in this book.

37By [We67], topological embeddability of a compact polyhedron JK21 into 1R4 implies
p.l. embeddability.
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4.1 (Generalized) Andrews-Curtis conjecture

Theorem 3.4 of the preceding section was the reason for J.J. Andrews and
M.L. Curtis to conjecture that every finite, contractible CW-complex K2 ful-
fills -1,o; see [AnCu65]. This Andrews-Curtis conjecture, henceforth
abbreviated by (AC), generalizes to question (30) of § 2.3 above, whether
a simple-homotopy equivalence between finite 2-dimensional CW-complexes
can always be replaced by a 3-deformation. The expectation "yes" as an an-
swer to (30) is the generalized Andrews-Curtis conjecture (AC'). But there ex-

3
ist several notorious examples, for which the implication K2 * = K2 /\ *
seems debatable; moreover, we are convinced that counterexamples to (AC')
for nontrivial fundamental groups are even more likely to exist; see Chapter
XII.

The following relations are of interest:

(61) A 3-deformation class of finite, contractible 2-complexes that does not
contain any 3-manifold spine would disprove (AC),

as the "trivial" class (6 for instance contains D2. On the other hand,

(62) a counterexample to (AC) which contains a 3-manifold spine K2 would
disprove the 3-dimensional Poincare conjecture,

which states that every closed, connected, simply connected 3-manifold is
homeomorphic to S3: Any 3-manifold thickening of K2 would constitute a
fake38 3-ball, as 4D(D3) _ 4bo (see (42) above).

The remark after (60) suggests that counterexamples to (AC) may also be
related to exotic p.l. structures on D5 resp. S4; compare [Go91].

Another motivation for the study of the generalized Andrews-Curtis problem
is C.T.C. Wall's result [Wa66] on the dimensions of deformations. He proved:

(63) Let f : Ko -> K1 be a simple-homotopy equivalence of connected, finite
CW-complexes, inducing the identity on the common subcomplex L.
If n = max(dim(Ko - L), dim(K1 - L)), then f is homotopic rel. L to

n+1
a deformation39 Ko //, K1 which leaves L fixed throughout, provided
n>3.

38A fake 3-ball is a compact, contractible 3-manifold which is not homeomorphic to D3.
The 3-dimensional Poincare conjecture is equivalent to claiming that fake 3-balls don't
exist (Exercise).

39Note that Wall's notation of the dimension of a deformation differs from ours for
transient moves.
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What can be said about the corresponding result for n < 2? For n = 0 it is
trivially true. The case40 n = 1 is easy if L is empty: By (15) we may assume
that Ko and K1 are a bouquet of circles. Up to homotopy, f is determined by
the images of these circles according to the isomorphism f.: irl (Ko) -* irl (K1)
of free groups. But Nielsen's theorem [Ni19] then yields that f is homotopic
to a composition of a finite sequence of cellular homeomorphisms and of maps
arising from 2-dimensional transient moves:

Figure 1.33.

These cases were already mentioned in [Wa66]. If L is nonempty but con-
nected, the case n = 1 was achieved by a "Nielsen theorem for free groups
with operators" in [Me791]; see also [Br761] and [DeMe88]. Wall [Wa80] sub-
sequently removed the connectivity hypothesis on L using a direct geometric
argument patterned on Stallings' proof of Grushko's theorem [St651].

Hence 2 is the only value of n, where (63) is an open question41. For L = 0
a positive solution would imply the generalized Andrews-Curtis conjecture.
Thus we propose to name the case n = 2 of (63) the relative generalized
Andrews-Curtis conjecture/problem (rel. AC')42

4.2 Zeeman collapsing conjecture

In this section we work within the p.l. category. As in § 2.2 (24), IKI \, ILI is
often proved by performing CW-collapses on PLCW-decompositions of IKI
and ILI within this p.l. structure.

"In the case n = 1 it is sufficient to solely assume f to be a homotopy equivalence. That
f is simple then is part of the conclusion.

4

41 In this case (63) still implies Ko /, K, rel. L.
42 As for (AC'), one could in this case also drop the requirement that the resulting

deformation is homotopic (rel. L) to the given map f .
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The collapse of { dunce hat} x I in § 2.2 (24) shows that H fulfills the

Zeeman Conjecture (Z): A compact contractible polyhedron crossed with the
unit interval collapses to a point: K2 * = IK2I x I \ *.

Zeeman also established the "Zeeman-property" IKI x I \, * for the standard
complexes of (a, b(ab, a"b"+1) and (a, blabn, abn+1). But so far it is not even
known whether all presentations of the form (a, blamb", a'bs) with ms - nr =
±1 fulfill IKI x I \, *; see Chapter XI, §3, for a detailed discussion.

(Z) is of particular interest because of the following:

(64) Zeeman's Conjecture implies the 3-dimensional Poincare-Conjecture.

According to Zeeman [Ze641] the following type of argument to prove (64) is
probably due to M.L. Curtis:

Let M3 be a closed connected and simply connected 3-manifold. Remove the
O

interior of a p.l. 3-ball to form M = 1171 - D3. M is connected and simply
connected and we have X(M) = X(M)+1 = 1. Collapse M to some spine K2.
By the exercise in the end of §1.3, K2 is contractible. Hence our assumption
yields M3 x I \, K2 x I \, *. Thus (46) implies that M3 x I is a p.l. 4-ball
with M3 x {0} being contained in the p.l. 3-sphere O(M3 X I), compare (56)
above. But 0M3 is the boundary of the open ball which was removed, so
8M is a 2-sphere. Hence, by the theorem of Alexander-Schoenflies [Mo77],
see also [Ha89], M3 is homeomorphic to D3. Therefore k3 is an ordinary
3-sphere after all, which proves (64).

Note that it suffices that some spine of M3 fulfills IK21 X I

As IK2I / IK21 x I would be a 3-deformation,

(65) Zeeman's Conjecture implies the Andrews-Curtis Conjecture.

But it is (even) unknown whether (Z) can be established under the hypothesis
of (AC); compare the examples preceding (64), which are contained in the
trivial presentation class.

The general case of deformations between compact, connected 2-dimensional
polyhedra can be related to collapses of K x I as follows:

K2 x I \, L'2 or L2 x I K'2 K2 / L2,
where K'2 resp. L'2 is p.l. homeomorphic to K2 resp. L2.
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The generalized Zeeman-Conjecture (Z') is the positive expectation to the
questioned implication. (Z') (Z) and (Z') (AC') are obvious.

4.3 Whitehead asphericity conjecture as a special prob-
lem of dimension 2

A connected 2-dimensional CW-complex K is called aspherical if 7r2(K2)
= {O} (compare Chapter X, § 1). In [Wh411], J.H.C. Whitehead raised the
following question:

(66) Is any (connected) subcomplex of an aspherical 2-complex itself aspher-
ical?

Or, reversely: is it possible to create nontrivial ire-elements by omitting ma-
terial from an aspherical 2-complex? The Whitehead asphericity conjecture
claims (66) to be true.

Notice that, in general, the inclusion of a connected subcomplex K2 into L2
does not induce an injective homomorphism 7r2(K2) -) ir2(L2):

(67) Example: K2 = Sl V S2, L = D2 V S2.

Here irl(K2) is infinite cyclic with generator a; r2(K2) is isomorphic to Z7r1
(i.e., the free module43 of rank 1 over the group ring Z7r1) generated by the
homotopy class of a homeomorphism f of S2 onto the 2-sphere of K. Consider
(a - 1) [f] E 7r2(K2). A realization of this element as a combinatorial map
g (see Chapter II, § 1.2) can be sketched as in Figure 34.

Figure 1.34.

43See Chapter II, § 2.1 for an explanation of ir2(K) as a module over Trl(K).
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As a map to L2, g can be homotoped to become the constant map, i.e.,
[g] = 0 E ir2(L2). (The map ir2(K2) - 7r2(L2) is the augmentation ho-
momorphism Zir1 -+ Z.)

Other variations of Whitehead's question likewise have a definitive answer:

If K is allowed to be 3-dimensional, then by addition of two-dimensional
material one can annihilate ir2(K) # {0}. This is shown by the

Example (Adams [Ad55]): Let the 2-skeleton of K3 be K2 of (67) and -
with notations as above - attach a 3-ball via any map in the homotopy class
(2a - 1) [f] E ir2(K2). Let L3 D K3 be obtained by enlarging the 2-skeleton
of K3 as for L2 3 K2 above; L3 - K3 is an open 2-cell. Similarly to the
argument after (67), the attaching map of the 3-cell of L is homotopic to
f, hence by § 2.1, Lemma 2.1, L3/\, D2 V D3 \ *, whence 7r2(L3) = {0}.
0

The straightforward generalization of (66):

K" C L" with ir,,(L") = 1014. irn(K-) = {0}

is true in dimension 1. In contrast to the example (67), the homomorphism
7r1(K1) -+ ir1(L1) induced by the inclusion of 1-complexes is always injective.
This can easily be deduced from § 1.3. On the other hand, the generalization
of (66) is false for dimensions > 3. As an example, take K'E = Si-1 C D" =
L". For n = 3, the Hopf-map (see [Ho31]) gives a nontrivial element of ira(S2);
for n > 4, we have Z2 (see [Hu59], Theorem 15.1).

So, as in § 4.1, (63), only the 2-dimensional case remains unsolved.

4.4 Further open questions

Wall's proof of (63) for n > 3 turns algebraic simple-homotopy operations on
chain complexes of universal covering spaces (see Chapter II) into geometric
deformations. The analogous construction for n = 2 is impossible in general:
it cannot be performed preserving the fundamental group throughout, as
defining relations have to take care of "more non-commutativity" than the
algebra of chain complexes. The same obstacle is the origin of the next two
open questions:

(68) Which torsion values lie in Wh*(7r) (C Wh(7r)), that is, which ones
occur as T(K, L) for a finite CW-pair, such that L is a deformation
retract of K, dim(K - L) _< 2 and 7r = 7r1(L)? Is Wh"(1r) always
trivial; is it a subgroup?
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See [Me76], [Co77], [Me791], [Me792] [Me85]. A deep result of O.S. Rothaus is
that there exist examples r E Wh(7r) for dihedral groups it with T §9 Wh*(R.);
see [Rot77].

(69) Let it be finitely generated, it = F(ai,... , a9)/N. Then N/[N, N]
is a Z(7r)-module, the relation module. Suppose the relation module
is finitely generated by h elements. Does it follow that N is nor-
mally generated by h elements R1, ... , Rh, i.e., that it has the presen-
tation (ai, ... , a9IR1i ... , Rh) with (not more than) h defining relators?
(Weaker, but also unsolved: is it finitely presented at all?)

See Gruenberg [Gr79], Harlander [Ha92]. Here is an idea for constructing
counterexamples; compare [HoLuMe85] and Chapter XII, § 3.1: Let U, V, W
be finitely presented groups with elements u E U, v E V, w E W of finite,
pairwise relatively prime order. Define U, V, W to be the quotients of U
resp. V resp. W by adding the relations u = 1 resp. v = 1 resp. w = 1.
Then it = U * V * W can be presented by forming the "disjoint" union of
presentations of minimal deficiency for U, V, W, enlarged by the relations
uvw = 1 and [v, w] = 1. But the last relator becomes superfluous in the
relation module, as it projects to [N, N]. Although in certain (nontrivial)
cases (with U, V, W finite abelian #cyclic) there exists also a presentation for
it which dispenses with one defining relation (see [Ho-An88]), we can't prove
and don't think that this holds in general.

Turning to the semigroup 7-l of presentation classes at the end of § 2.3, there
are the questions

(70) whether Q**-classes of balanced presentations (ai, ... , a9JR1,... , R9)
for 7r={1}

a) are invertible,

b) are of finite resp. infinite order.

Craggs and Howie [CrHo87] have given a characterization of invertible classes.
[Me792] contains an argument showing that the truth of (AC) would imply
that a factorization of any element fi E f, # by factors # F0 must
terminate after finitely many steps. But further analogies to the existence of
the prime factorization of 3-manifolds (compare [He76]) are unknown so far.

In this section we have not listed again questions which were already men-
tioned earlier in this chapter. We also recommend the lists of problems Kirby
[Ki78] and Wall [Wa79]. They have stimulated research since they appeared,
and although progress has been made in the meantime, they are still worth
consideration.



Chapter II

Algebraic Topology for Two
Dimensional Complexes

Allan J. Sieradski

This chapter presents homotopy classifications of two dimensional CW com-
plexes and maps between them. Cases of these abstract classifications are
detailed in Chapter III. Simplicial techniques are invoked in Section 1 to an-
alyze maps of balls and spheres into 2-complexes. This analysis is applied in
Section 2 to study the long exact sequence of homotopy groups for a 2-complex
and to derive J. H. C. Whitehead's equivalence of the homotopy theory of
2-complexes with the purely algebraic theory of free crossed modules. Cel-
lular chain complexes of universal coverings of 2-complexes are developed in
Section 3. This equivariant world provides the foundation for the treatment
in Section 4 of an abelianized version of Whitehead's equivalence, namely, the
theory of algebraic 2-type of 2-complexes due to S. Mac Lane and Whitehead.

1 Techniques in Homotopy

In this section, we use simplicial approximations of maps between simplicial
complexes to construct combinatorial approximations of maps between CW
complexes, at least in dimensions one and two.

1.1 Simplicial Techniques

We view real m-space Rm as a real vector space and we assume that the reader
is familiar with the concepts of finite simplicial complexes K in IRm and sim-
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plicial maps 0 : K -4 M between such complexes. We don't distinguish nota-
tionally between a simplicial complex and the associated topological subspace
of Rm, and let context convey the object under consideration.

Simplicial Approximations Not every (topological) map f : K -+ M be-
tween simplicial complexes K and M respects their simplicial structure. But
we shall show that each such map is approximated by a simplicial map, in the
following sense: A simplicial map 0 : K -* M is a simplicial approximation
to a map f : K -* M provided, for each point x E K, the image point O(x)
belongs to a closed simplex t in M whenever the image point f (x) belongs to
the corresponding open simplex t in M.

A simplicial approximation 0 serves as a controlled representative of the ho-
motopy class of the map f. By definition, the line segments [O(x), f (x)]
for all points x E K lie in simplexes in M and so provide a homotopy
0 ^ f : K -* M relative to any subspace of K on which the map f and
the simplicial map ¢ agree.

Simplicial approximations are constructed using the following lemma. For
each vertex v E K° of a simplicial complex K, let StarK(v) be the union of
all open simplexes of K having v as a vertex. Let StarK denote the cover of
K by its open vertex stars StarK(v) (v E K°). The open coverings StarK
and StarM of two simplicial complexes K and M provide this simplicial
approximation test, whose proof is left as an exercise:

Lemma 1.1 A map f : K -+ M admits a simplicial approximation if and
only if the open covering StarK refines f -1(StarM); moreover, any vertex
assignment 0 : K° -+ M° such that StarK (v) C f -'(Star, (O(v)) for all
v E K° determines a simplicial approximation 0: K -> M to f. 0

Any map f passes this test for a sufficiently fine barycentric subdivision of
the domain complex K. Here is a sketch of this fundamental result.

The barycenter of a k-simplex s = v° ... Vk is its point with equal barycentric
coordinates: b(s) _ Eko k4 vi. The barycentric subdivision of a simplicial
complex K is the simplicial complex Sd K whose vertices are the barycen-
ters b(s) of the simplexes s of K and whose simplexes b(so)b(s1) ... b(sk) are
determined by the chains of proper faces s° < s1 < ... < sk of simplexes of
K. The simplicial complex Sd K has the same underlying space as K but
its mesh, or maximal simplex diameter, is decreased by the factor d/(d + 1),
where d = dim K. This fact and Lebesgue's covering lemma show that for
any given open covering U of K, there is some iterated barycentric subdivision
K* of K whose star covering StarK* refines U.
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Coupled with the simplicial approximation test (1.1), these observations yield
the following simplicial approximation theorem:

Theorem 1.2 Let f : K -+ M be any map of finite simplicial complexes.
For some iterated barycentric subdivision K* o f K, there is a simplicial ap-
proximation 0 : K* -> M off : K -4 M. O

The relative barycentric subdivision SdL K of K modulo a simplicial subcom-
plex L consists of all simplexes t = vovl ... vjb(sl) ... b(sk) associated with
sequences vov1 ... vj = so < sl < ... < Sk of proper faces of simplexes so
of L and simplexes 81, ... , sk of K - L. The case j = -1, so = 0, and
t = b(s1) ... b(sk) is allowed.

Clearly, SdL K retains L as a subcomplex, and so SdL only creates shrinkage
in the size of simplexes of K away from L. Nevertheless, there is this relative
version of Theorem 1.2 due to Zeeman [Ze642]:

Theorem 1.3 Let f : K -+ M be a map of finite simplicial complexes that
is simplicial on a subcomplex L of K. For some barycentric subdivision K*
modulo L of K, there is a simplicial map 0: K* -* M and a homotopy f f-- 0
relative L. O

We use these approximation techniques to analyze maps of such spaces as the
unit ball-sphere pair (B"+1, S") of II8n+1 We first analyze maps of an (n + 1)-
dimensional complex onto an n-dimensional complex. The generic situation
is the projection of 1R"+1 = 1[8" x 1[81 onto R. The image of the n+1-ball B"+1
under this projection is the n-ball B" and the pre-image of a smaller ball con-
centric with B" consists of two small n-dimensional hemispherical boundary
caps about the poles of S" = aB"+1 as well as an n + 1-dimensional cylinder
in the interior of B"+1 spanning these caps. Moreover, these hemispherical
caps acquire opposite orientations in S' = aB"+1 from an orientation of their
image in B". We use simplicial linkages to show that an analogous situation
always holds for simplicial maps.

Simplicial Linkages Let (K, L) be any triangulation of any manifold pair
(N"+1, ON n+1) in R"+1 such as (B"+1, S"). Let 0 : K -4 M be a simplicial
map to an n-dimensional simplicial complex M. If 0 maps an open (n + 1)-
simplex t = vo ... v"+1 of K onto an open n-simplex w = uo ... u" of M, the
surjective assignment of the n + 2 vertices of t to the n + 1 vertices of w makes
exactly one duplicate assignment 0(vi) = 0(vv), where 0 < i < j < n. So 0
maps two n-faces s = vo ... vt ... v"+1 and s' = vo ... vj ... v"+1 oft onto w,
folding t along their shared (n - 1)-face vo ... v, ... vj ... v"+1 and identifying
their two unshared vertices v= and vj (v denotes that the vertex v is deleted).
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Since each n-simplex s of the manifold interior K - L is a face of exactly
two (n + 1)-simplexes t and t' of the triangulation K, it follows that each
component of the pre-image ¢-1(w) of an open n-simplex w of M can be
expressed as a sequence

S1 < tl > 82 < ... > Si < tj > sj+l < ... > s,_1 < tr-1 > Sr

of distinct open n-simplexes sj and open (n + 1)-simplexes tj of K such that,
for all 1 < j < r, sj and sj+l are distinct faces of tj (see Figure 1). The single
vertex bj+1 of sj that sj+1 lacks is called the vertex behind sj+l and the single
vertex fj of sj+l that sj lacks is called the vertex in front of sj. Any such
sequence of simplexes in K is called a simplicial linkage in K.

By maximality of components, a simplicial linkage that arises as a component
of the pre-image 0-1(w) of an open n-simplex w of M either begins and ends
at the same n-simplex s1 = Sr in K - L or joins distinct n-simplexes s1 # s,
of the boundary subcomplex L. It is called a toroidal simplicial linkage or a
a cylindrical simplicial linkage, accordingly.

Sj bj+l

Figure II.1. Simplicial linkage

We now show that the ordered end n-simplexes of an n + 1-dimensional
cylindrical simplicial linkage in Rn+1 are oppositely oriented simplexes of the
boundary subcomplex L. The following definitions make this claim precise.

Let H{vo,... , vn} be the hyperspace in R"+' of affine combinations K o wivi
(i.e., E o wi = 1) of the vertices v0,... , vn of an n-simplex. A point p E Rn+1
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lies in the hyperspace H{vo,... , vn} if and only if the (n + 2) x (n + 2) matrix

V0,1 . . . vo,n+l 1

(VOI...IvnIP)=
vn 1 . . . vn,n+l 1

P1 Pn+1 1

whose rows involve the Euclidean coordinates of the n + 1 vectors v 0 , . . . , vn,
and p, has trivial determinant. Thus, the complement in Rn+1 of the hy-
perspace H{vo,... , vn} has two components, called the sides of H in 118n+1
whose points p are characterized by the two possible signs of the non-zero
determinant Det(vo I ... I vn I p). This sign is called the sign of the ordered
n-simplex s = vo ... vn with respect to the point p and it is denoted by Signr s.

(a) (b)

Figure 11.2. Signf; sj 54 Signb,+, sj+1 and Signb, sj 0 Signf; s,

Theorem 1.4 When the vertices of each n-simplex of a cylindrical simplical
linkage in 0-1(w) are given the ordering o f their image vertices u 0 , . . . , un in
the n-simplex w, the first and last ordered n-simplexes s1 and sr in the bound-
ary subcomplex L have opposite sign with respect to their opposing vertices.

Proof: The claim Signf1 s1 # Signb,.s, follows from an odd number of ap-
plications of the following two facts: First, any two consecutive n-simplexes
sj and sj+l of the linkage have opposite signs, Signf;sj Signb,+, sj+l, with
respect to the vertices fj and bb+l opposite them in the (n + 1)-simplex tj.
Indeed, because the midpoint mj =

2
(fj + bj+1) is on the same side of the hy-

perspace through sj as ff and also on the same side of the hyperspace through
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sj+l as b3+1, then Signf; s3 = Sign,,, sj and Signb,+, sj+l = Signmi sj+l (see
Figure 2a). But Signet, sj # Signm1 sj+1, by inspection of the matrices
(... f I ... Jmj) and (... lb3+ll ... Imj). Second, any intermediate n-simplex
sj (1 < j < r) has opposite signs Signb1 sj # Signf; sj with respect to the
vertex b behind it and the vertex f3 in front of it, as these vertices are on
opposite sides of the hyperspace through sj (see Figure 2b). 0

We now analyze maps of an n + 1-dimensional object onto an (n - 1)-
dimensional object. The generic case is the projection of Rn+1 = Rn-1 X R2
onto lRn-1. The pre-image in Rn+1 of the origin 0 E Bn-1 is the surface
{O} x 1R2. We use simplicial curtains to express the analogous situation that
holds for any simplicial map.

Simplicial Curtains Let (K, L) be any triangulation of any manifold pair
(Nn+1 aNn+l) . If a simplicial map 0: K -+ M sends an open (n+1)-simplex
t = vo ... vn+l of K onto an open (n - 1)-simplex w = uo ... un_1 of M, the
surjective assignment of the n + 2 vertices of t to the n vertices of w either
makes two duplicate assignments or exactly one triplicate assignment, as in
Figure 3.

t

t

Figure 11.3. Simplicial curtain core

w

b(w)

So 0 maps onto w either three or four n-faces of t, as well as the three or four
(n - 1)-faces in which those n-faces meet. Thus the pre-image under 0 of the
barycenter b(w) contains the convex hull of the barycenters of the (n-1)-faces
oft mapped onto w, namely, a triangle or quadrilateral whose edges lie in the
n-faces of t mapped onto w. Since each n-simplex of the manifold interior
K - L is a face of exactly two (n + 1)-simplexes of the triangulation K, it
follows that each component of the pre-image E,,, = 0-1(b(w)) is an oriented
2-dimensional manifold whose boundary lies in the boundary L of K. We call
the pre-image Aw = 0-1(w) of the open (n - 1)-simplex w of M a simplicial
curtain in K; it serves as a product neighborhood of the 2-manifold Ew in K.
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1.2 Combinatorial Maps

The CW complexes of J. H. C. Whitehead [Wh491] afford a convenience of
economy over simplicial complexes, but their cellular (i.e., skeletal preserv-
ing) mappings are too loosely structured for our purposes. For convenience,
we consider a restricted class of complexes and cellular maps that we call
combinatorial.

Combinatorial Maps and Complexes Let (Dn, Dn) denote any CW pair for

the ball-sphere pair (Bn, Sn-1) with the single interior n-cell BO'= Bn - Bn;
_it is unique in dimensions n = 0,1 (for n = 0, read (B°, S-1) = ({1}, 0)

(B°, B°)). Let (Dn x D1, Dn x D1 U Dn x D1) be the product complex on

(Bn+1 Sn) _ (Bn x B1, Bn x B1 U Bn X B1)

with the single interior (n + 1)-cell Bnx B1. A product (n + 1) -cell cn+1 in a
CW complex L is a cell having a cellular characteristic map V) : Dn x D1 -* L
that extends characteristic maps Oj : Dn x {j} -4 L for (not necessarily
distinct) n-cells c (j = ±1) of L. A cellular map f : L -> K collapses a
product (n + 1)-cell (c"+ , 0) if

f io = f O,projection: DnxD1-+Dnx{j}-4 L-4K(j=±1).

A cellular map f : L -+ K is called combinatorial if each open n-cell (n > 0)
of L is either carried homeomorphically onto an open n-cell of K or is a
product n-cell (n > 1) that is collapsed by the map f. In particular, an open
1-cell of L is carried by a combinatorial map either homeomorphically onto
an open 1-cell of K or is collapsed to a 0-cell of K.

A CW complex K is called combinatorial if each n-cell c' (n > 0) has a
combinatorial characteristic map 0 : (Dn Sn-1) -+ (Kn Kn-1) i.e., the at-
taching map q5 : Sn-1 -i Kn-1 is a combinatorial map for some combinatorial
complex on Sn-1. Notice that according to this inductive definition of combi-
natorial complexes, every CW complex of dim < 1 is combinatorial and that
a 2-dimensional complex is combinatorial provided that each 2-cell attaching
map : S1 -+ K1 sends each 1-cell of some complex on S' either homeo-
morphically onto an open 1-cell of K or collapses it to a 0-cell of K. These
2-complexes were first considered by Reidemeister [Re32]; see Chapter I, §1.4.

Combinatorial Approximations The standard cellular approximation the-
orem [Wh491, item (L)] states that any map between CW complexes is ho-
motopic to a cellular one, i.e., one that respects the skeletons. The following
combinatorial approximation theorems (1.5) and (1.6) present refinements for
maps of balls and spheres of dimension 1 and 2.
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Theorem 1.5 Any loop S' -* M1 in a 1-complex M' is homotopic to a
combinatorial map g : L -* M1 of some complex L on S1.

Proof: Subdivision of the 1-cells into thirds converts the 1-complex M1 into
a simplicial complex N. The combinatorial quotient map q : N - M1 that
collapses the first and last thirds of the 1-cells in M1, while expanding the
middle thirds onto the original 1-cells in M1, is a deformation of the identity
map 1KI. Then the composition q¢ : L -* N -+ M1, for any simplicial
approximation 0 : L -> N of the original loop S' -+ Ml, gives a combinatorial
map g : L -* Ml homotopic to the original loop.

Theorem 1.6 Skeletal pairs (K2, K1) and (M2, M1) having the same 1-
skeleton K' = M1 and 2-cells {ca} that are attached via homotopic maps

S' -+ K' = M1} are homotopy equivalent.

Proof: The technique of proof of Lemma 1 in Chapter I, §2, suffices. Con-
sider a family H = {Ha : Sc, x I -* K1} of homotopies {Ha : ( .Xa}.

The adjunction space WH = K'UH{B« x I} obtained by attaching the solid
cylinders {Ba2 x I} to K1 via the homotopies in H contains the subspaces

Kl UH {(B.2 x 10}) U (Sa x I)} and K1UH{(S« x I) U (B, x {1})}

as strong deformation retracts. Since the latter are homeomorphic to K =
K' U{0o.} {B«} and M = Ml U{aa} {B,2,}, respectively, we have homotopy
equivalences K WH M rel K1.

For each k > 1, let (Pk, Pk) be the regular k-sided polygonal complex on
(B2, S'), with k corner 0-cells, k edge 1-cells, and a single interior 2-cell. By
Theorems 1.5 and 1.6, any 2-complex is homotopy equivalent to one K, each
of whose 2-cells c2 has a combinatorial characteristic map z/i : (Pk, Pk) -*
(K2, K'), for some k > 1. So each 2-cell c2 has the structure of an open

O -
polygon Pk= Pk - Pk, each of whose edges is either collapsed to a 0-cell of K
or is identified homeomorphically with a 1-cell of K. In other words, K is a
combinatorial 2-complex.

The following two results show that any map B2 -4 K into a combinatorial
2-complex K is homotopic to a combinatorial map.

Lemma 1.7 Let {Pk, : 1 < i < m} be any family of disjoint closed polygons
in the interior of the unit disc B2. Any map F : D - K' of the punctured
disc D = B2 _U,Pk, that is combinatorial on the boundary aD is homotopic
relative OD to a combinatorial map D -> K1.
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Proof: The combinatorial map F : aD -* K' is a simplicial map of the
simplicial subdivisions (8D)* and (K1)* that divide 1-cells into triples of 1-
simplexes. Then Theorem 1.3 provides a homotopy relative aD of F to a
simplicial map G : D -+ K1 of some triangulation of D extending (8D)*.
Each component of the pre-image G-1(s1) of the middle third simplex s1 in a
1-cell c1 C K' is either an annular simplicial linkage in D - OD or one ending
on the middle third simplexes in 1-cells of aD, as in Figure 4a.

The collapse of the outer 1-simplexes in the 1-cells in OD and K1, coupled
with an expansion of each middle third 1-simplex onto the full closed 1-cell,
give deformations of D and K1. They convert G : D -+ K1 into a map for
which the pre-image G-1(c1) of each 1-cell c1 of K' is a highway system A,, in

this sense: Each component of Ac' is either an embedded rectangle B1 x B1
whose ends B1 x {±1} are 1-cells in aD or is an embedded annulus B1 X S1,
in either case, on whose oriented cross-sections B1 x {t} the null-homotopy
G acts like the characteristic map 01 of the 1-cell c1.

There is a deformation of D that widens the open highway systems and strong
deformation retracts their complement G-1 (K') onto a graph. This gives a
map D -> K1 that is homotopic relative aD to the original map and that is
combinatorial on a complex C (Figure 4b) formed by the original complex on
the OD, the graph, and some product cells subdividing the highways.

(a) (b)

Figure 11.4. Simplicial linkages and combinatorial complex C

Theorem 1.8 Any map F : (B2, S1) -* (K2, K1) into a combinatorial com-
plex whose restriction FIS, is combinatorial on some complex L on Si is
homotopic relative S1 to a combinatorial map (C, L) -+ (K2, K') of some
complex pair (C, L) on (B2, S1).
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Proof: The simplicial subdivision K1* of the 1-skeleton K1 (dividing 1-cells
into triples of 1-simplexes) extends to a simplicial subdivision K* of K, with
the center of each 2-cell c2 of K as the barycenter of some central 2-simplex
t2 C c2 in K*. Since the restriction FISH is a combinatorial map L -4 K, it
defines a simplicial map L* K*. Then Theorem 1.3 provides a homotopy
relative S' of F to a map G : B2 -+ K that is simplicial on some triangulation
of B2 extending L*.

The pre-image G-1(t2) of a central simplex t2 C c2 is the finite union of
2-simplexes A of M that G carries homeomorphically onto t2. The combi-
natorial characteristic map &2 : (Pk, Pk) -* (K2, K') of an k-sided 2-cell c2
of K provides a small k-gon qS(ePk) centered in c2 and contained within the
central 2-simplex t2. There is a deformation of K relative K1 that radially
expands the central k-gon O(EPk) in each 2-cell c2 onto the full closed 2-cell,
pushing complementary points out to the 1-skeleton K1.

This deformation of K relative K1 deforms G relative S1 into a map H
B2 -3 K for which the pre-image H-1(c2) of an open k-sided 2-cell c2 of K is
the finite union of small open k-gons in B2 - S1 on whose closure H acts like
the characteristic map 4,2 : (Pk, Pk) -* (K2, K'). Then Lemma 1.7 applies
to the restriction of H to the punctured disc H-1(K1) = B2 - Uc2 G-1 (c2).
This provides a combinatorial map (B2, S1) -4 (K2, K') whose restriction to
S1 is the original map.

Combinatorial Models For notational convenience, we often collapse a
spanning tree T in the 1-skeleton K1 in a connected 2-complex K to convert
(K2, K1) into a homotopy equivalent pair with a single 0-cell. This uses the
facts that T is a contractible space and the subcomplex inclusion (T, T) C
(K2, K1) is a cofibration. When the tree collapse is applied prior to the
polygonalization of the 2-cells, the structure of the resulting combinatorial
2-complex can be expressed using group presentation terminology.

A group presentation P = (x I r) consists of a set X = {x} of elements
called generators, together with an indexed set r = {r} of elements called
relators that are (not necessarily reduced) words in the semigroup W(x) on
the alphabet xUx-1. Let F(x) denote the free group W(x)/ - of words in the
alphabet x U x 1 under equivalence relation - generated by the elementary
relations xx-1 - 0 - x-1x. Let N(r) denote the smallest normal subgroup of
F(x) containing the relation words r E r. The quotient group II = F(x)/N(r)
is called the group presented by P = (x I r)

Let VxSx be the sum of copies of the minimal 1-sphere complex Sx = co U cx
indexed by the generators x E x. Each relation word r = (x1, . . . , of

length k(r) spells out a combinatorial loop r : Pk(*) -+ VxSx that is used to
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attach a 2-cell c; to the sum V.,SI. The resulting oriented 2-complex

K=c°UcxUcr (x Ex, rEr)
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is called the model or standard complex K9 of the group presentation P =
(x r). Each 2-cell c* (r E r) acquires a combinatorial characteristic map
Or (Pkirl, Pk(r)) -4 (K2, K1), where k(r) is the length of the relator r E r.

We summarize the preceding discussion with the following theorem, which
relates to Chapter I, (15).

Theorem 1.9 The skeleton pair of a connected 2-complex K is homotopy
equivalent to that of the model Ky of a group presentation P = (x I r).

Preferred Homotopies: Framed Links and Curtains The simplicial linkage
and curtain techniques apply to refine a homotopy of combinatorial maps
of two-dimensional combinatorial complexes. The following statements are
offered without details of proof to illustrate the possibilities.

For an inessential combinatorial map F : S2 -a K, there exists a null-
homotopy N : B3 -+ K for which the closure of the pre-image N-1(c2)
of each 2-cell c2 of K is a framed link A,2 in this sense: each component of
A,2 is either an embedded polygonal torus P,, x S1 or a polygonal cylinder
Pn x B1 (embedded except that its polygonal ends are attached to a pair of
2-cells {d2+, d? } in S2 by their characteristic maps Eli+, '_, which according to
Theorem 1.4 are oppositely oriented), in either case, on whose oriented polyg-
onal cross-sections Pn x {z} the null-homotopy N acts like the characteristic
map 0,2 = Fof : P,, -4 K of the 2-cell c2 of K. The union A(N) = U A,2 is
called the framed link for the null-homotopy N.

A null-homotopy N exists for which, in addition, the closure of the pre-
image N-1(c1) of each open 1-cell c1 of K is a curtain r,j in this sense: Each
component of r, is a thickened surface B1 x E (E a orientable surface). Each
boundary annulus in B1 x aE is combinatorially attached along a highway wi
of product 2-cells on the boundary of S2 U N-1(K2 - K'), on whose oriented
cross-sections B1 x {z} the null-homotopy N acts like the characteristic map
0,1 : B1 -a K for the 1-cell c1. The union r(N) = U r, is called the curtain
system for the null-homotopy N. The components of the framed link A(N)
and the curtain system r(N) are spatially separated in B3, except where
attached. The remainder of B3 belongs to the pre-image N-1(K°). Such
a homotopy N of combinatorial maps is entirely determined by its link and
curtain system {A(N), r(N) }.
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2 Homotopy Groups for 2-Complexes

In this section, we develop Whitehead's identification of the homotopy the-
ory of 2-dimensional CW complexes with the purely algebraic theory of free
crossed modules. In §2.1, we begin with an examination of the long exact
homotopy sequence for the skeletal pair(K2, K') of a connected 2-complex
K. The algebraic properties of this sequence are then codified in the defi-
nition of crossed module. In §2.2, we establish the two-dimensional case of
Whitehead's Theorem characterizing maps of CW complexes that are homo-
topy equivalences. Finally, we deduce a portion of Whitehead's identification
of 2-dimensional homotopy theory with the algebraic theory of free crossed
modules whose groups of operators are free groups.

2.1 Fundamental sequence for a 2-complex K

We call a space equipped with a basepoint a based space, and we call a
basepoint preserving map between based spaces a based map. We use 1 =
< 1, 0, ... , 0 > as the basepoint for the (n + 1)-ball B"+1 and n-sphere Sn.

For a based pair (Y, B), we view the homotopy groups irs+,(Y, B), irn(B),
and irn(Y) in dimensions n > 1 as sets of homotopy classes of based maps
(B11+1, Sn) -* (Y, B), S" -* B, and S" -3 Y, respectively. We assume that
the reader is familiar with the definition of their group operations and the
fact that they are linked by a long exact homotopy sequence:

... 7rn+l(Y, B) 7r (B) -* 7rn(Y) 7rn(Y, B) ... #+ 7ro(Y).-84

Homotopy Action Any based map F : (Bn+1 Sn) -+ (Y, B) can be deformed
into another based map G : (Bn+1 Sn) -* (Y, B) by dragging the image of
the basepoint backwards along any loop a : Sl -> B at the basepoint. More
precisely, given F and a, there exists a homotopy H : G ^ F from G to
F mapping {1} x I via a o exp : I -+ Sl -+ B. Such an H is called an
a-homotopy and is denoted by H : G F. For a construction, let

R : (Bn+1 Sn) x I -+ ((Bn+1, Sn) X {1}) U ({1} X I)

be any retraction and let < F, a >: ((Bn+l, Sn) x {1}) U ({1} x I) -+ (Y, B)
be defined by F on (Bn+1 Sn) x 111 and by the loop a on 111 x I. Then
H = < F, a > oR : (Bn+l, Sn) x I -* (Y, B) is an a-homotopy. It is an
exercise to show that, if G c , F, the based homotopy class [G] depends upon
just the based homotopy class [F] and the path-homotopy class [a] E ir,(B).
The homotopy class [G] is called the action of [a] on [F] and is denoted by
[G] = [a] . [F] E 7rn+l (Y, B)
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For each n > 1, the homotopy action defines a group homomorphism

h : ir,(B) -+ Aut(irn+1(Y, B)), h[al ([F]) = [a] . [F],

making the fundamental group 7r1(B) a group of operators on the group
7rn+l(Y,B). For n > 1, the action h : 7r1(B) -+ Aut(7rn+l(Y,B)) extends
linearly to make the abelian group irn+1(Y, B) a left module over the integral
group ring Z(ir,(B)). Similarly, there is an action

h : 7r,(Y) -+ Aut(irn(Y)),h[a]([F]) = [a] - [F],

making the fundamental group 7rl (Y) a group of operators on the group
irn(Y), for each n > 1. For n = 1, this action h is conjugation; for n > 1, this
action h makes the abelian group 7rn(Y) a left module over Z(7rl(Y)).

Here are two important properties of the action that we leave as exercises:

Exercise 1 The action of 7r, (B) on ir2(Y, B)) gives (a[G]) [F] = [G] [F] [G]-1
for [F], [G] E ir2(Y, B). (Hint: To visualize an a-homotopy GFG-1 'a F
where a = aG : S1 -* B, let two small oppositely oriented discs in B2 that
are mapped by G under GFG-1 coalesce across a path joining the basepoint
1 E S1 to a disc in B2 that is mapped by F.)

Exercise 2 0 : 7r2(Y,B) -* 7r, (B) respects the actions of 7r1(B) on both
groups in that a([a] [F]) = [a][OF][a]-1 for [F] E 7r2(Y,B) and [a] E ir1(B).
(Hint: The boundary of an a-homotopy G ^'a F can be sliced open to form
a path-homotopy aG a OF a-1.)
Fundamental sequence for 2-complex We now specialize to the case of a
connected 2-complex K = K2. Because the higher homotopy groups 7rn (K1)
(n > 2) of the 1-skeleton K1 are trivial, the long exact homotopy sequence
for the skeleton pair (K2, K1) breaks down into shorter exact sequences

0-4 7rn(K2) #7rn(K2,K1)-*0 (n>3)

and

11(K) : 0 --> 7r2(K2) 7r2(K2,K1) -- 7r, (K1) =4 ir,(K2) 0

The four term exact sequence II(K), called the fundamental sequence of K,
has a surprising rich structure. In §2.2, we shall establish J. H. C. Whitehead's
observation [Wh492, Theorem 6] that the fundamental sequence captures the
entire homotopy type of the 2-complex K2 and the higher homotopy modules
of K2 are superfluous.

Our first task is to interpret the groups and homomorphisms in the funda-
mental sequence. For convenience, we work, as we may by Theorem 1.9, with
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the model K = K-p of a group presentation P = (x I r). The model K has
one-skeleton K' = VCSS. For each x E x, the inclusion i, : SS -* K' of one
of the summands represents a fundamental group element [ix] E ir,(K'). As
in Section 1, F(x) denotes the free group of words in the alphabet x U x-1.

Lemma 2.1 For the model K = KK of a group presentation P = (x I r),
there is a group isomorphism : F(x) -4 7r,(Kl) defined uniquely by the
correspondence of each generator x E x with the homotopy class [ix] E 7r, (K1)
of the inclusion iy : SS -* K'.

Proof: By a universal property of the free group F(x), the homomorphism
is well-defined; it sends each reduced word w = x1 2 ... xm E F(x) to the

homotopy class of the product loop that spells w:

} E1 E2 f

J w = 2x1 2x2 ... ' 2Xm :S'-*K'=VXS2.

By Theorem 1.5, the homomorphism is surjective: each loop f : S1 -+ K'
deforms into a combinatorial loop fw spelling some word w E F(x).

By Theorem 1.8, the homomorphism is injective: If T;(w) = [fw] is trivial,
then the map f,,, : S' -> K' spelling the word w = x111 x22... xm admits a
null-homotopy F : B2 -+ K1. The map fu, is combinatorial on the boundary
P71 of the regular m-gon complex on S1. As in Theorem 1.8, F deforms
relative S' into a combinatorial map G : B2 -* K', as in Figure 5.

sic

G

P.

Figure 11.5. Free reduction

n

10

As there are no 2-cells in K', the entire disc B2 is paved with product 2-
cells that are collapsed to 1-cells in K by G. Each non-annular component
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of the highway system G-1(cx) ends on oppositely oriented open 1-cells d;
and dj' of P,,, that correspond to entries x;' and x6i of the word w with
xi = x = xj. Also Ei = -Ej, by Theorem 1.5. These components of the
highway system are disjoint and provide a complete pairing of all the entries
x;' of the word w. Beginning with an outermost component that necessarily
ends on adjacent edges of the boundary P,,,,, they describe a free reduction of
the word w = xl'x2 . . . xm to 1 in F(x) using only the group axioms and the
relations xx-1 = 1 = x-1x.

Lemma 2.2 For the model K = KP of a group presentation P = (x I r),
the relative homotopy group ir2(K2,K1) is generated, up to the homotopy
action of 7r,(K1), by the homotopy classes [0,.] of the characteristic maps
0,.: (B2, S1) -+ (K2, K1) of the 2-cells {c,2 : r E r} .

Proof: Any based homotopy class [F] E 7r2(K2, K') is represented by a
combinatorial map G : (B2, S1) --* (K2, K1), as constructed in Theorem
1.9. The closures of the components of the pre-image G-1(K 2 - K') are
disjoint polygons {Pk(,,) : 1 < i < m} in B2 - S1 on which G acts as signed
characteristic maps (Pk(r;), Pk(rj)) -* (K2, K')} of certain 2-cells {c?. :

1 < i < m} in K. Let the loops jai : S1 -* K1} arise from the restrictions
of G to disjoint arcs in B2 - UPk; joining the base point 1 E S' = aB2 to the
basepoints of these polygons. Since G carries the complement B2 - U P,,;
into the 1-skeleton K1, the geometry of the configuration of arcs and polygons
in B2 (see Figure 6) shows that [F] = [G] E '7r2(K2, K') equals the product
fIi [ai] [-Or,]'' in counterclockwise order of the arcs.

Figure 11.6. Polygonal balloons and strings

Theorem 2.3 The inclusion-induced homomorphism i# : 7r, (K1) -4 ir1(K2)
for the model K = Kp of the group presentation P = (x r) is the quotient
homomorphism F(x) -3 F(x)/N(r).
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Proof: The homomorphism i# is surjective by the cellular approximation
theorem, and ker i# = im 02 by exactness of the homotopy sequence for
(K2, K'). The boundary operator 02 : 7r2(K2, K') -+ ir,(K') respects the
homotopy action by 7rl(K') and therefore it sends the ir, (K') -generators
[4,] E ir2(K2,K1) to ir,(K')-&enerators a2([cb,]) = [m,] for im a2 = ker i#.
Since the combinatorial map 0, : S1 -* K' spells r E r, then E irl (Kl )
and r E F(x) correspond under the natural isomorphism 7r, (K') Pz F (x) of
Lemma 2.1. Therefore, ker i# = N(r).

Crossed Modules in Homotopy Our second task is the description of the
rich algebraic structure of the boundary operator 0 : 7r2(K2,K1) -+ 7r, (K1)
in the fundamental sequence for a 2-complex K. This description involves
crossed modules and is due to J. H. C. Whitehead [Wh492), R. Peiffer [Pe49],
and K. Reidemeister [Re49]. We express their ideas using an exact sequence
associated to the group presentation P = (x I r) on which K is modeled.

The fundamental group 7rl(K') = F(x) has its homotopy action on the rel-
ative homotopy group n2(K2, K') and its conjugation action on itself. As
observed earlier, in the discussion of the homotopy action, the boundary op-
erator a : ir2(K2, K') -* ir,(K1) has these two features:

(1) First, ,9 is a 7r,(K')-homomorphism, that is, 0([a] [F]) = [a]0[F][a]-1

for [F] E ir2(K2, K') and [a] E 7r, (K1).

(2) Second, the action (a[G]) [F] of a[G] E 7rl(Kl) on [F] E 7r2(K2,K1)
equals the conjugate [G][F][G]-1 of [F] by [G] in 7r2(K2, K').

Here is the terminology introduced for this situation by J. H. C. Whitehead
[Wh492]. A G-crossed module (C, a, G) consists of groups C and G, and
action of G on the left of C, denoted by g c for c E C and g E G, and a
homomorphism a : C -+ G such that

(CM1) 0(gc) = g(ac)g-1 for all g E G, c E C, and

(CM2) cdc 1 = (ac) d for all c, d E C.

When the property (CM2) is lacking, (C, a, G) is called a pre-crossed module.
A morphism of (pre-) crossed modules (r7, T) : (C,,9, G) -+ (C', Y, G') consists
of group homomorphisms rl : C - C' and T : G -* G' such that Ta = a'i7 and
i7(gc) = T(g)q(c) for C E C and g E G. We call rl a T-homomorphism. The
morphism (i7, r) is called an isomorphism if 77 and T are group isomorphisms.

Thus, the two features recorded above constitute the irl(K')-crossed module
structure of a : 7r2(K2, K') -+ ir,(K'). There is the third feature, indicated
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in Lemma 2.2: ir2(K2, K1) has a set of 7rl (K1)-generators in one-to-one corre-
spondence with the indexed set r of relators of P = (x I r). All three features
of the homotopy crossed module 8 : 7r2(K2,K1) -4 irl(K') are incorporated
in the following algebraic construction associated with P.

(Pre-) Crossed modules from presentations Let E(P) denote the free group
on the set F(x) x r of ordered pairs (w, r) where w E F(x) and r E r. Let
F(x) act on E(P) by v (w, r) = (vw, r) for v, w E F(x) and r E r. Then
E(P) is called the free operator group on r with left operators from F(x). A
sequence w = ((wj, rl)El, ... , r,n)E") in the generators of E(P) and their
inverses is called a word in E(P) and will be denoted by w = fIi(w;,r;)Ei
Each word w represents (i.e., freely reduces to) an element W E E(P).

Let F(x) operates on itself by conjugation and let 8 : E(P) -* F(x) be the
F(x)-homomorphism given on the basis elements by 8(w, r) = wrw-1, where
w E F(x) and r E r. Notice that im(a) = N(r), the normal closure of r in
F(x). The subgroup I(P) = ker (a : E(P) -* F(x)) of E(P) is called the
group of identities for the presentation P = (x I r).

The operator homomorphism 8 : E(P) -* F(x) is a pre-crossed module;
it duplicates all but the second of the three properties described above for
homotopy boundary operator. The action of 8(w, r) = wrw-1 E F(x) on
(v, s) E E(P) gives (wrw-lv, s). Although (wrw-lv, s) doesn't equal the
conjugate (w, r) (v, s) (w, r) -1 of (v, s) by (w, r) in E(P), they have the same
boundary in F(x). This implies that their difference

(w, r)(v, s)(w, r)-' (wrw-1v, s)-1

in E(P) belongs to the group of identities I(P) = ker a. These differences
measure the failure of (CM 2) for this pre-crossed module.

These elements of I(P) of the form

(w, r)(v, s)(w, r)-1(wrw-lv, s)-1,

where w, v E F(x) and r, s E r, are called the basic Peiffer elements. More
generally, the elements of E(P) of the form UVU-1(a(U) V) -1 for U,V E
E(P) are called the Peiffer elements. The normal closure P(P) < I (P) in
E(P) of the basic Peiffer elements is called the Peiffer group for the presenta-
tion P = (x I r). One checks that P(P) is invariant under the action by F(x)
on E(P), and that P(P) contains, and is generated by, the Peiffer elements.

Thus, the quotient group C(P) = E(P)/P(P), provided with the induced
action of F(x), and the induced F(x)-homomorphism 8 : C(P) -> F(x),
given on the generators by 8((w, r)P(P)) = wrw-1, constitute an F(x)-
crossed module. For this F(x)-crossed module associated with the group
presentation P = (x I r), we have ker a = I(P)/P(P) and im a = N(r).
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Thus, analogous to the fundamental sequence for the 2-complex K is the
following fundamental sequence for the group presentation P = (x I r):

1(P) : 0 -4 I(P)/P(P) -i C(P) -* F(x) -a F(x)/N(r) -+ 0

Representing identities and Peiffer identities The analysis of the funda-
mental sequence 1(K) of the 2-complex K = Kp is completed below by an
identification of the homotopy boundary operator 8 : ir2(K2, K1) -; ir,(K1)
with the crossed module 8: C(P) -* F(x). We begin with some preliminary
geometric ideas which ultimately identify ir2(K2, K') as a quotient of E(P).

We first construct a homomorphism il: E(P) -4 ir2(K2, K'), as follows. For
the group presentation P = (x I r), recall that the action of v E F(x) on the
free group E(P) having basis {(w, r) E F(x) xr} is given by v(w, r) = (vw,r),
and that each 2-cell c,2 (r E r) of the model K = Kp has a characteristic map
¢,.: (B2, Sl) -> (K2, K') whose attaching loop 8[0,1 = represents r under
the identification T : F(x) - 7r1(K1) of Lemma 2.1. So the correspondence of
(1, r) E E(P) with [¢,.] E ir2(K2, K1) extends uniquely to a homomorphism
r/ : E(P) -+ 7r2 (K', K') that satisfies 8rl = ra and respects the actions of
F(x) on E(P) and ir, (K1) on 7r2 (K2, K1), under the identification T : F(x)
7r1(K1). In short, q is a -r-homomorphism.

For any word w = fi(wi, ri)`i in E(P) of length m, we construct a standard
representative R,., : (B2, S1) - (K2, K1) of i7(w) E 7r2(K2, K1), as follows.
In the 2-ball B2, we form a descending sequence of disjoint k(ri)-gons Pk(r;)
(1 < i < m), centered on the axis {0} x B1 and compatibly oriented with B2,
and a sequence ti (1 < i < m) of arcs joining the basepoint 1 E S' = 8B2 to
those of the polygons Pki,,i (1 < i < m). The map R,., : (B2, S1) -* (K2, K1)
carries the polygons {Pk(,;)} via the signed characteristic maps {Ori} and
sends their complement into K1, with the arcs {ei} mapped as representative
loops {ail for the elements {wi = [ail} in F(x) - 7r,(K1). The map R,
is captured by the balloons and strings assignments of Figure 6. Now the
balloons assignments realize the multiplication in ir2(K2, K') and the strings
assignments realize the action of 7r1(K 1). So if the word w freely reduces to
W E E(P), then R, represents the homotopy class q(W) E 7r2(K2, K1). In
particular, 0[RW] = r 1i 1 under the identification T : F(x) - 7r1(K1)

By the simplicial linkage techniques of Section 1, any homotopy H : (B2, S1) X
I -4 (K2, K') of such maps R,, and R, can be deformed to become one for
which the closure of each inverse image H-1(c2,) of an attached 2-cell c,2 in K is
a framed link A, in this sense: Each component L of A, is either an embedded
polygonal torus Pk(,) x S' or a polygonal cylinder Pk(,) x B' whose polygonal
ends Pk(,.) x {±1} lie in B2 x 10, 11, in either case, on whose oriented polygonal
cross-sections Pk(,) x {z} the homotopy H acts like the characteristic map
0, for the 2-cell c,2. The union U{A, : r E r} is called the framed link AH
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of the homotopy H. The embedding of the segment 1 x B1 on the cylinder
Pk(,) x B1 or the loop 1 x S1 on the torus Pk(*) x S1, gives an index curve AL
on the cylindrical or toroidal component L that records its twisting.

For inessential maps (B2, Sl) -+ (K2, K'), this geometric analysis has an al-
gebraic analogue in a characterization of Peiffer identities due to Reidemeister
[Re49] and explicitly stated by Papakyriakopoulos in [Pa63, Theorem 3.1]:

Lemma 2.4 A word w = lli(wi, ri) Ei in E(P) represents a Peiffer identity if
and only if w represents an identity W E I(P) and there is a pairing (i, j)
such that (a) ri = rj, (b) Ei = -Ej, and (c) wiN(r) = wjN(r) in F(x)/N(r).

Proof: The necessity of the pairing condition follows from the definition of
the basic Peiffer elements in P = P(P). Now suppose that w represents an
identity W E E = E(P) and satisfies the pairing condition. Since

(wrEw-lv, s)a - (w, r)E(v, s)6(w, r)-' mod P,

there is an expansion w' of the word w representing an element W' - Wmod P
and admitting a pairing (i, j) of its indices such that (a) r; = rj, (b) E'i = -E'',
and (c) w; = w' in F(x). This element is necessarily an identity W' E I =
I (P) and lies in the commutator subgroup [E, E]. It remains to show that

i n [E, E] c [I, E] C P.

For the first containment relation, let a : N(r) -> E denote a splitting
homomorphism for a : E -4 F(x) defined on its free image N(r) 4 F(x).
Because Va(OV)-1 E I for any V E E and so

UVv(aV)-1a(8U)-1

-Ua(OU)-1Va(8V)-1 mod [I,E],

it follows that the assignment U -* Ua(8U)-1 [I, E] defines a homomorphism
A : E -+ I/[I, E]. Because A[E, E] = 1, as [I, I] _< [I, E], and because
A(U) = U[I, E] when U E I, it follows that I n [E, E] C [I, E].

Finally, [I, E] C P, because

UVU-1V-1 = UVU-1(a(U) V)-1 E P,

whenUEl.
The geometric analysis of null-homotopic maps and the previous characteri-
zation of the Peiffer identities make possible the following lemma.

Lemma 2.5 The r-homomorphism rl : E(P) -+ ir2(K2, K') is surjective with
ker rJ = P(P), the group of Peiffer identities.
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Proof: The r-homomorphism 77 carries the F(x)-generators (1, r) E E(P) to
the ir1(K')-generators [0,.] E 7r2(K2,K1) and so is surjective.

To prove that ker i C P(P), let W E ker q. Then it is an identity W E
ker a = I(P) since T(O(W)) = 8(77(W)) and r is an isomorphism. For any
word w that represents W E ker 77, the map R, represents i7(W) = 1 in
ir2(K2,K1) and so admits a null-homotopy H with framed link AH. Then
the ends of a cylindrical component L of A, must be two discs in just the floor
B2 x 0 of B2 x I, and so they represent two entries (wi, ri)'i and (wj, rj)Ej of
the word w for which ri = r = rj and ei = -ej by Theorem 1.4. Furthermore,
the index curve AL on L and the arcs ti and Lj constitute a null-homotopic
loop in B2 X I. Since H is constant on AL and H1a2x{o} = Ru, represents wi
and wj on ti and Li, it follows that wiN = wj N in 7r1(K1). So the cylindrical
components of the framed link AH define a complete pairing of the factors of
the word w = ff i(wi, ri)E' as in Lemma 2.4. Thus the identity W represented
by w is a Peiffer identity.

To prove that, conversely, P(P) C ker q7, first observe that 77 is trivial on
the basic Peiffer elements, being a T-homomorphism to the 7r1(K1)-crossed
module 8 : ir2(K2, K') -4 irl (K'). A specific null homotopy H for the map
R,, associated with a basic Peiffer identity

w = (w, r)(v, s)(w, r)-1(wrw-1v, s)-1

is described by a simple unknotted framed link AH (viewed in Figure 7 from
the basepoint 1 E S') in which the cylindrical component ending on (w, r)
and (w, r)-1 crosses in front of that ending on (v, s) and (wrw-lv, s)-1. Since
P(P) is the normal closure in E(P) of the basic Peiffer elements and ker r7 is
normal in E(P), the containment relation P(P) C ker 17 follows.

Figure II.7. Framed link for w = (w, r) (v, s) (w, r)-1(wrw-1v, s)-1
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Theorem 2.6 The F(x)-crossed module 0 : C(P) -+ F(x) associated with
the presentation P = (x I r) is isomorphic to the 7r1(K1) -crossed module
a : 7r2(K2, K') -+ 7r,(K1) for the model K = K.

Proof: By Lemma 2.5, the 7--homomorphism 7) : E(P) -+ 7r2(K2, K') induces
a ,r-isomorphism 77: C(P) = E(P)/P(P) -i 7r2(K2, K').

Theorems 2.3 and 2.6 identify the fundamental sequences for the model K =
Kp of a group presentation P = (x I r):

0 - I(P)/P(P) - E(P)/P(P) - F(x) -4 F(x)/N(r) -* 0

II III TII II

0 -> 7r2(K2) 7r2(K2,K1) -4 7r1(K1) 7r, (K') -* 0.

In particular, this includes the following observation of Reidemeister:

Theorem 2.7 (Reidemeister [Re49]) The second homotopy group 7r2(K2)
is isomorphic to the quotient group I(P)/P(P) of identities modulo Peiffer
identities.

There is more to be said about the algebraic structure of the 7r,(K')-crossed
module a : 7r2 (K', K1) -* 7r, (K'). The abstract crossed modules that can
arise as a homotopy crossed modules are the free crossed modules.

Free Crossed Modules A G-crossed module a : C -* G is called a free
G-crossed module with indexed basis {c, : i E Z} C C if it satisfies this
universal property: given a G'-crossed module 8' : C' -* G', indexed subset
{c; : i E Z} C C', and homomorphism 7- : G -4 G' such that 7-(a(c;)) = a'(c;)
for each i E Z, then there is a unique homomorphism 77 : C -> C' such that
7)(c,) = c; for each i E I and (77, 7-) : (C, a, G) -* (C', Y, G') is a G-crossed
module homomorphism.

By construction, the F(x)-crossed module a : C(P) -* F(x) associated with
a group presentation P = (x I r) is a free F(x)-crossed module with indexed
basis {(1, r) : r E r}. Hence, the analogous statement holds for the isomorphic
7r1 (K')-crossed module a : ir2(K2, K') -* 7r1(Kl). The converse holds:

Theorem 2.8 Any free crossed module over a free group has a topological
realization as the homotopy crossed module for a 2-complex
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Proof: By the universal property, any free G-crossed module a : C -* G
where G is a free group F(x) with free basis x is isomorphic to the F(x)-
crossed module a : C(P) -+ F(x) associated with some group presentation
P = (x I r). Simply take the set r of relators to be the boundary values in
G = F(x) of the indexed basis of C. So Theorem 2.6 says that the given
free crossed module over a free group has a topological realization as the
homotopy crossed module for the 2-complex K = Kp.

The techniques employed in Theorem 2.6 may be used to verify this general-
ization due to J. H. C. Whitehead [Wh492, Section 16]:

Theorem 2.9 If X is obtained from A by attaching 2-cells {c2} via based
maps Sl --* A}, then 0 : 7r2 (X, A) -* ir1(A) is a free irl (A) -crossed
module with indexed basis { [4;] E ire (X, A)}.

2.2 II(K) and the homotopy type of a 2-complex K

Whitehead's Theorem for 2-complexes We first give a direct proof of the 2-
dimensional version of Whitehead's result (see the progression, [Wh39, The-
orems 15, 17], [Wh48, Theorem 1], and [Wh491, Theorem 1]) that a map
between CW complexes is a homotopy equivalence if and only if induces iso-
morphism on their homotopy groups.

The next two lemmas concern the models K and L of two presentations
P = (x ( r) and Q = (x I s) that have the same generator set x and have
relator sets r and s with the same normal closure N(r) = N = N(s) in the
free group F = F(x). By Lemma 2.3, K and L have identical fundamental
group H = F/N

Lemma 2.10 Any map G : K -4 L that induces the identity isomorphism
on the fundamental group H is based homotopic to one that is the identity
map on the common 1-skeleton VxSx of K and L.

Proof: If G# : 1r1(K) -+ 1r1(L) is the identity on II, then G# [2x] = [G ix] _
[jx], for the inclusions ix : SS C K and j, : Sx C L. So Gl si : VXS,1 -* L
is based homotopic to the inclusion VxSx C L. As (B2 U {0}) U (S1 x I) is a
strong deformation retract of B2 x I, then (K U {0}) U (K1 x I) is a strong
deformation retract of K x I. Using this retraction, we may extend to K x I
the homotopy already defined on the 1-skeleton. Thus, G is based homotopic
to a map K -+ L that is the identity on VxSx.
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Lemma 2.11 Any extension G : K -a L of the identity map on the common
1-skeleton of K and L that induces an isomorphism G# : ir2(K) -+ 7r2(L) is
a homotopy equivalence.

Proof: We first show how to construct a right homotopy inverse for G that
is also an extension of the identity on the common 1-skeleton. The map
G : (K2, K') -4 (L2, L') induces a ladder of homomorphisms between the
fundamental sequences of K and L:

0 -> ir2(K2) -'+ 7r2(K2,K1) -4 ir,(K1) -±4 7r,(K2) -+ 0

r 4. A .. II II

0 -4 ir2(L2) '-* > ir2(L2, Ll) ir,(Ll) -+ 7r,(L2) -> 0.

Because G# = r : 7r2(K2) -+ ir2(L2) is an isomorphism, so also is the homo-
morphism G# = A : 7r2(K2, K1) -* ir2(L2, L1).

For the characteristic map 4s : (B2, S1) -3 (L2, L') of each 2-cell c8 in L, we
select any based map 0s : (B2, Sl) -> (K2, K') representing the pre-image
A-1([Os]) E 7r2(K2, K1). Since G# = A, then G L3 ^J cs : (B2, Sl) -> (L2, L1).
Because G is the identity on K' = L1 and (B2 x {0}) U (S1 X I) = B2,
then the map 08 applied to B2 x {0} and the restriction of the homotopy
G 0s 0s to S' x I combine to define a new map 08 : (B2, Sl) -+ (K2, K'),
one that makes z = 3 : S' -* K1 = Ll and makes possible a new homotopy
G 0, (0s : (B2, Sl) -4 (L2, L') relative S1. Then the extension J : L -3 K
of the identity on Kl = L1 given by Jas = 0s on each 2 -cell c9 in L satisfies
GJ ^_- 1L : (L2,L1) -+ (L2,L1) relative V. In particular, G has J as a right
homotopy inverse.

Since J#([qs8]) = [O] = A-1[0s] for the ir,(L1)-generators [qs] E ir2(L2,L1)
of Lemma 2.2, then J# = A-1 : 7r2(L2, L1) -* 7r2(K2, K1), the inverse of the
module isomorphism G# = A. By the technique of the previous paragraph
J has a right homotopy inverse D. Then D GJD ^_- G, so G and J are
homotopy inverses.

In order to deduce Whitehead's theorem on homotopy equivalences, we resort
to a technique of expanding presentations of isomorphic groups.

Let P = (x I r) and Q = (y I s) be disjoint presentations of isomorphic
groups. Let %F : Q to E : 4 be inverse isomorphisms given by the assignments
x -4 Wx and y -+ Vd, where Wx and V. denote words in alphabets y and x,
respectively. There are the expanded presentations

P(-P) = (x,y I r,Vy y-1(y E y))
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and

Q(W) _ (y, x I S, W. x-1(x E X))

that have the same generators and whose relators have the same normal
closure N in the free group F = F(x, y) because T and are inverse homo-
morphisms. So P(4) and Q(T) present the same group II = F/N.

Theorem 2.12 (Whitehead's Theorem [Wh491]) A map F : K -+ L of
connected 2-complexes is a based homotopy equivalence if and only if it induces
isomorphisms F# : 7rl(K) -> 7r1(L) and F# : ir2(K) -4 ir2(L).

Proof: The direct implication is trivial; it remains to prove the converse.
The 2-complexes K and L may be assumed to be the models of arbitrary
presentations P = (x I r) and Q = (y I s) of groups f and Let
tY : ir1(K) H 7r1(L) : 4D denote the isomorphism F# and its inverse. The ex-
panded presentations P(') and Q(T) have the same generators and present
the same group II. Their models K(f) and L(4') of P(4D) and Q(TY) have
identical 1-skeleton and identical fundamental group H. The structure of the
expanded presentations shows that the inclusions K C K(') and L C L(AY)
are homotopy equivalences (elementary cellular expansions) that convert the
map F : L -i M inducing iY on ir1 into a map K(-D) -4 L(AY) inducing the
identity automorphism of II (and an isomorphism on ir2). By Lemmas 1 and
2, -4 L(AY) is a homotopy equivalence; hence, so also is F.

Maps of fundamental sequences For a G-crossed module a : C - G, let
ir1 = coker a and ir2 = ker a. Then 7r2 = ker a is an abelian group by (CM2)
and it is invariant under the action of G by (CM1). Further, this action
induces an action of ir1 = coker a on the left of 7r2 = ker a, in view of (CM2),
making 7r2 = ker a into a module over 7G-7r1.

Any morphism of crossed modules (,q, ,r) : (C, a, G) -4 (C', a', G') induces
group homomorphisms ;r : 7rt -+ Sri and i : ire -* 7r2 by projection and
restriction. The latter is an operator homomorphism associated with the
former in that rt(g c) = (;r- (g)) (c), for g E 7rt = coker a and c E 1r2 = ker a.
We call (i', r) an equivalence of the crossed modules (C, a, G) and (C', a', G')
when g and T are group isomorphisms.

Now any cellular map F : K -+ L between connected 2-complexes K and L
induces ladder of homomorphisms between the exact homotopy sequences of
their skeletal pairs. In particular, this yields a morphism between the free
crossed modules a : ire (K2, K1) -* irl (K1) and a : 7r2 (L2, L1) -+ 7r1(L1) . And
by Whitehead's Theorem 2.12 , the map F is a homotopy equivalence if and
only if the induced morphism is an equivalence.
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Conversely, a given pair of free crossed modules with free operator groups
may be viewed as homotopy crossed modules for a skeletal pairs of 2-complex
K and L, by Theorem 2.8. In this case, any morphism

0 - 1r2(K2) 7r2(K2,K1) -- 7r1(K1) 2# 7r1(K2) -+ 0

l77 1T

0 -# 7r2(L2) -!+ 7r2(L2,L1) a) 7r1(L1) Z#) 7r1(L2) ---) 0.

is realized by a map (K2, K1) -i (L2, L') of the skeletal pairs. A mapping
between the bouquet of 1-cells in K and L is described by T; an extension
over the attached 2-cells is described by 77.

Thus we have established the two dimensional version of Whitehead's obser-
vation [Wh492, Theorems 4 and 6]:

Theorem 2.13 The homotopy classification of 2-dimensional complexes is
identical to the equivalence classification of free crossed modules, whose groups
of operators are free groups.

Whitehead went further and introduced a homotopy relation for maps of
crossed modules and showed that "the homotopy theory of 2-dimensional
complexes, including the homotopy classification of mappings, is equivalent to
the purely algebraic theory of free crossed modules, whose groups of operators
are free groups" ([Wh492, page 468]).

3 Equivariant World for 2-Complexes

The difficult nature of free crossed homotopy modules limits the applicability
of the 2-dimensional homotopy classification described in Section 2. The
cellular chain complex of the universal coverings of two-dimensional complexes
offers an abelianized version of the classification that is much more practical.

3.1 Hurewicz Isomorphism Theorems

We present the first two Hurewicz isomorphism theorems, with very direct
proofs that utilize the combinatorial techniques of Sections 2 and 3. The
Hurewicz homomorphisms connect the homotopy groups with the more easily
computed homology groups. We assume that the reader is familiar with the
basic definitions and properties of singular homology theory.



76 Sieradski: II. ALGEBRAIC TOPOLOGY FOR 2-COMPLEXES

Hurewicz Homomorphisms By use of the excision and homotopy prop-
erties for singular homology theory, we can inductively select generators
sn E H,,(S") and E Hn+1(Bn+1,Sn) of these infinite cyclic singular
homology groups for n > 1 so that a(bn+1) = sn, and q*(bn) = sn, where
q : Bn - Sn is the quotient map collapsing the boundary sphere Sn-1.

The absolute Hurewicz map hn : irn(K) -+ Hn (K) (n > 1) is defined by hn ([ f ])
= f* (sn) and the relative Hurewicz map h' ,+l : 7r,,+, (K, L) -4 H,+1 (K, L) is
defined by h;,+1([F]) = F*(bn+l).

We leave the following facts as exercises: (1) The Hurewicz maps are homo-
morphisms. (2) By the care exercised in the inductive choice of the gener-
ators sn and bn+l, the Hurewicz maps form a commutative ladder of homo-
morphisms between the long exact homotopy and homology sequences for a
based pair (K, L). (3) Because the action of irl(L) on lrn(K,L) and lrn(L) re-
lates based homotopy classes whose representatives are freely homotopic and
because freely homotopic maps induce the same homology homomorphisms,
then the Hurewicz homomorphisms trivialize the homotopy actions.

Cellular Homology For convenience, we work with cellular homology
hereafter. A brief review of this subject follows. Let K be a CW complex.

The cellular chain complex C(K) = (Cn(K),an) has chain groups C,,(K) _
Hn(Kn, Kn-1) (n > 0) and boundary operators (n > 0):

Cn+l (K)
1)

Hn+l(Kn+l Kn) e°+24 Hn(Kn) -114 Hn(Kn,Kn-l).

By the excision property of singular homology H*, the characteristic maps
{<k,n : (B n' Sn-1) -+ (Kn, Kn-l)} for the n-cells {Cn} of K determine an
external direct sum decomposition of nth cellular chain group C,,(K):

< 0c^* >: ®c*Hn(Bn' Sn-1) -+ Hn (K', K'- 1)

There results a free abelian basis {o,n * (bn) } for Cn (K) in one-to-one corre-
spondence with the set {cn } of n-cells of K. Each generator Oc" * (b,) is usually
abbreviated by the corresponding n-cell symbol cn itself.

In terms of these generators, the boundary operator an+l : C"+1 (K) -+ Cn (K)
(n > 0) is given as a linear combination an+1(cn+1) = F_cn [Cn+l, Cn] cn, where
the integral coefficient [cn+1, cn] is called the incidence number of the n + 1-cell
cn+1 on the n-cell cn.

One can show that the incidence number [cn+1 cn] is the degree of the map:

Sn -+'> Kn -4 K"/(K" - Cn) 4-" Bn/Sn-1 = sn
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that measures how the attaching map for the n + 1-cell cn+1 wraps
around the n-cell cn.

The chain condition anan+l = 0 (n > 1) for the cellular chain complex
C(K) = (C,, (K), 8n) is best checked using the original definition of the bound-
ary operators, in terms of entries from the long exact singular homology se-
quences of the pairs (Kn, Kn-1) and (Kxi-1, Kn-2). By the chain condition,
the group of n-boundaries,

Bn(K) = im (an+1 : Cn+1(K) -+ Cn(K)),

is a subgroup of the group of n-cycles,

Z ,,(K) = ker (8n : Cn(h) - Cn-1(h))

The quotient group

Hn(C(K)) = ker 8n/im 8n+1,

called the nth cellular homology group, consists of cosets {zn} = zn+Bn(K) of
n-cycles zn E Z (K). The cellular homology groups H,,(C(K)) are isomorphic
to the singular homology groups Hn(K); see Massey's text [Ma80, Chapter
IV] or Schubert's text [Schu64, Chapter IV].

Theorem 3.1 (Hurewicz [Hu35]) For any connected 2-complex K, the
Hurewicz homomorphism hl : 7rl(K) -+ Hl (K) is abelianization.

Proof: In view of Theorem 1.9, we may consider the model K = Kp of some
group presentation P = (x I r). Since 7r1(Sl) and H1(S1) are infinite cyclic
groups generated by [is,) and rl, respectively, and h1[1s,] = 1si,k(7-1) = rl,
then the Hurewicz homomorphism hl : 7r1(Sl) -+ H1(Sl) is an isomorphism.
Since the inclusion maps ix : Sx C VrSS determine a free product decompo-
sition {ix# : 7r1(Sz) -* 7r1(VxSx)} by Lemma 2.1 and an internal direct sum
decomposition {i,, : H1(SS) -3 H1(V.SS)} by excision, it follows from the
naturality of hl that it is the abelianization homomorphism when applied to
V-, S..

For the 2-complex K itself, there is this commutative ladder of Hurewicz
homomorphisms:

-4 7r2(K2)
7#4 7r2(K2,K1) -24 7r1(Kl)

. h2 4. h2 hl

... - H2(K2) =+ H2(K2,K1) - H1(Kl)
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Now h1 for K' = V.,Si is abelianization and h2 is surjective as the 7r,(K')-
generators [0,] of 7r2(K2, K') in Lemma 2.2 are sent to the free abelian basis
members h2([O,]) = 0,*(b2) = c,2 of H2(K2, K'). A diagram chase proves
that h1 : irl (K2) -+ H, (K2) is surjective and has ker h, contained in [ir,, 7r1],
the commutator subgroup of 9r, = ir1(K2). The reverse containment holds
because H, (K2) is abelian. So h, : rr, (K) -+ H, (K) is also abelianization.

Theorem 3.2 (Hurewicz [Hu35)) For any simply connected 2-complex K,
the Hurewicz homomorphism h2 : ir2(K2, K') -* H2 (K2, K') is abelianization
and the Hurewicz homomorphism h2 : 7r2(K) -> H2(K) is an isomorphism.

Proof: We take the model K = KD of a group presentation P = (x I r) of
the trivial group. There is this commutative ladder of homomorphisms and
short sequences that are exact since K is a simply connected 2-complex.

1 -> I(P) -* E(P) F(x) -* 1

1u l77 17-

0 - 7r2(K2) '-# > 7r2(K2,K1) -4 ir,(K') 1

1 h2 1 h2 1 hl

0 - H2(K2) -L+ H2(K2,K1) - H,(K1) - 0

Injectivity of h2 : ir2(K2) -4 H2(K2). Let [g] E ir2(K2) have h2([g]) = 0.
Using the surjectivity of 77 (Lemma 2.5), we select a word w = fji(wi, ri)'i in
E(P) representing an identity W E I(P) for which

?7(W) = [Re.,] = liT(wi) - [Y'r;]E'

equals j#([g]). Because h2 j# = j h2 and because h2 has values h2([q,.]) _
Or*(b2) = c*, we have 0 = h2([R.]) = Ei eic,2,. Because {c,2 : r E r} is a basis
for H2(K2, K'), there is a pairing (i, j) of the indices of the sum Ei eicT, such
that c2- = c2- and ei = -ej. Because wiN(r) = wjN(r) in the trivial group
F(x)/N(r), this same pairing of the indices of the word w = Ili(wi, ri)'i shows
that the identity W is a Peiffer identity by Lemma 2.4. So j# ([g]) = 77(W) = 1
by Lemma 2.5. Because j# is injective, we must have [g] = 0 in 7r2(K2).

The kernel of h2 rr2(K2, K') - H2(K2, K'). An analogous argument
applies to [G] E 7r2(K2, K') having h2([G]) = 0. A word w representing
W E E(P) with [G] = r7(W) admits a pairing of its indices, as above, and
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so can be expanded, as in the proof of Lemma 2.4, to a word w' represent-
ing W' - W mod P(P) from [E(P), E(P)]. Thus, [G] = q(W) belongs
[7r2(K2, K'), 7r2(K2, K')]. Conversely, the latter commutator subgroup con-
tains ker h2 because H2(K2, K1) is abelian.

Surjectivity of h2 : 7r2(K2) -+ H2(K2). We view any element of

H2(K2) = ker (8 : H2(K2, K') -* H,(K'))

as the image h'2([F]) E H2(K2, K') of some [F] E 7r2(K2, K'). Then 8([F])
belongs to ker h, = [7r, (K'), 7r,(K1)], as h18 = ah2. Since 7r,(K') = im 8,
there exists [G] E [7r2(K2, K'), 7r2(K2, K 1)] with 0([G]) = 8([F]). Then
[F][G]-1 has image h2([F][G]-1) = h2([F]) in the abelian group H2(K2, K')
and it also belongs to

7r2(K2) = ker (8 : 7r2(K2, K') -+ 7r1(K1)).

This proves that h2 : 7r2(K2) -+ H2(K2) is surjective.

3.2 Two Dimensional Equivariant World

We assume that the reader is familiar with the basic theory of covering spaces
and the construction of a universal (i.e., simply connected) covering complex
K for any connected CW complex K; see, e.g., [Si92, Chapter 15]. We now
discuss the cellular chain complex of the universal covering complex k and
the equivariant structure induced by the group of covering transformations.

Equivariant cellular chain complex The covering transformations of the
covering projection PK : K -+ K are those homeomorphisms T : K -+ K of
K for which PK o T = Pt:. They constitute a group under composition which
we denote by Aut(pK).

The fundamental group 7r1(K) and the group Aut(pK) of covering transforma-
tions are related by the fundamental isomorphism A.,; : 7r1(K) -* Aut(pK).
It is defined, using 0-cell basepoints * E K and E pl.1(*) in K, by A([a]) _
T t* T(*) = (a o exp)-(1), where (a o exp)` : I --> K is the unique path
lifting initiating at * of the loop a o exp : I -+ S' -+ K at *. We use A,,; to
identify these isomorphic groups 7r,(K) and Aut(pK) and denote them by H.

Let C(K) be the cellular chain complex (C,, (k), 8n) of the universal covering
complex K. Each covering automorphism 7r : K -+ K is a cellular map
and so determines a chain map C(7r) : C(K) -* C(K). The action of the
automorphism group II on the cellular chain complex C(K) via the induced
chain maps C(7r) : C(K) -+ C(K), 7 E II, makes C(K) a chain complex of
(left) modules over the integral group ring ZrI.
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The cells of K that lie over a given one c in K are permuted by the group
Aut(pK) of covering transformations 7r E H. So selected cellsc in K, one over
each cell c in K, provide a preferred 7GII-basis for C(K) as a chain complex
of free 7LII-modules. We call C(K) the equivariant cellular chain complex of
the connected CW complex K.

K. Reidemeister originally utilized such equivariant chain complexes to give
a combinatorial classification of lens spaces [Re35] (see also [Re34]).

Equivariant Chain Maps The same construction for a second connected
CW complex L gives a universal covering complex L, a covering projection
pL : L -- L, fundamental isomorphism A : 7rl(L) - E - Aut(pL), and
equivariant cellular chain complex C(L) over 7LE.

Let a : II -+ E be any homomorphism. To be able to employ module-theoretic
terminology, we consider this change of ring procedure: Each ZE-module M
can be viewed as a Z11-module aM in which the operation of 7r E II on
m E aM is given by 7r m = a(ir) m. Each Z -module homomorphism
h : M -4 N is a Z11-module homomorphism h : aM -+ ,N, and the ring
homomorphism Za : ZII -+ ZE, 7La(E,r n,rir) = E,r n,ra(ir), is also a 7LII-
module homomorphism 7La : ZII -3 ,Zs.

A based map F : K -> L is a-equivariant if for all covering transformations
irElland a(zr)EE,the mapsFir:K--4K-*Land a(7r)F:K-*L->L
coincide. Alternately, one says that F : K -+ aL is equivariant.

The uniqueness property for liftings yields: Any based map F : K -*L
with F# = a : irl(K) -+ irl(L) has an a-equivariant lifting k : K -4 L.
Conversely, any a-equivariant based map F : K -4 L covers a based map
F : K--+ L with F# =a: irl(K) -* irl(L).

When the equivariant cellular chain complex C(L) = (C,,,(L), an(L)) over
ZE is viewed as a chain complex aC(L) = (aCn(L), 01n(L)) over 7LII, we
have: The lifting F : K -4 L of a cellular based map F : K -4 L with
F# = a : iri(K) -+ iri(L) induces a chain map C(F) : C(K) -*a C(L) of
7LII-module homomorphisms, called the equivariant chain map induced by F.

An arbitrary chain map C(K) - ,C(L) is called 0-admissible if it carries
the 7L-basis elements of C°(K) to the Z-basis elements of C°(L), preserving
basepoints, equivalently, it is induced in dimension 0 by a based equivariant
map K° -,,L°.

The advantage the universal covering complex k has over the complex K is
that homotopical problems for K transform into homological problems for K.
In particular, the equivariant cellular chain complex C(K) of a 2-complex K
is rich enough to contain the homotopy module ir2(K):



3. Equivariant World for 2-Complexes 81

Lemma 3.3 For any connected 2-complex K, there is a ZH-module isomor-
phism 7r2(K) -4 H2(K) relating the homotopy action of n - 7r1(K) on 7r2(K)
and covering automorphism action of lI - Aut(pK) on H2(K).

Proof: Because k is simply connected, the homotopy action of 7r1 (K) on the
homotopy group 7r2(K) is trivial. It follows that 7r2(K) is identical to the free
homotopy set [S2, K] free; so 7r2(K) acquires an action of the automorphism
group H - Aut(pK) by composition. Any two based maps G, F : S2 -4 K
at * lift to based maps d, .P : S2 - K at *. Any presumed a-homotopy
from G to F for a loop a : S1 -+ K at * lifts to a free homotopy from G
to some lifting of F. By the uniqueness of liftings, this lifting of F is not
F, but rather its translation T o F : S2 -a K -* K, where 0([a]) = T
under the fundamental isomorphism 0,,,; : 7r1(K) --4 Aut(pK). By definition
of the homotopy action in 7r2(K), we have [G] = [a] [F]; and by way of
the lifting of the a-homotopy, we have [G] free = [T o F] free. This shows
that PK# : [S2, K]free - 7r2 (k) -4 7r2(K) is a 7GII-module isomorphism from
the covering automorphism action to the homotopy action, assuming the
identification A : 7r1(K) - H - Aut(pK) by the fundamental isomorphism.

The homology group H2(K) admits an action by the automorphism group
11 = Aut(pK) via the induced homology homomorphisms 7r, : H2(K) -
H2(K) (7r E II). The Hurewicz isomorphism h2 : 7r2(K) = [S2, K] free +
H2(K) is a ZrI-module isomorphism, because both groups have covering au-
tomorphism actions and the Hurewicz homomorphism is natural.

Theorem 3.4 If F : K -* L is a based cellular map of connected 2-complexes
with F# = a on 7r1i then the homomorphism F : H2(K) -a H2(L) induced by
the equivariant chain map C(F) : C(K) -+ ,, C(L) is identical to the homotopy
module homomorphism F# : 7r2(K) -+ a7r2(L).

Proof: By the lifting property PL F = F PK and the naturality of the Hure-
wicz homomorphisms, there is this commutative diagram:

72 (K) PE K# 7r2(K) h2* H2(K) = ker 82 (k) < C2(k)

1 F# 1 F# 1 P. 1 C2(F')

72 (L) PL 7r2(L) h + H2(L) = ker a2(L) < C2(L)

involving the identifications of Lemma 3.3.
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Modification Given a based cellular map F : K -+ L of 2-complexes with
F# = a on it1 and a Zrl-module homomorphism 7: C2(K) -4 a7r2(L) (called a
C2(K)-cochain with coefficients in air2(L)), we define a new map F1 : K -+ L,
called the spherical modification of F by -y, as follows. F- acts just like F,
except that it preliminarily pinches a circle in each 2-cell c2 of K to create
an additional 2-sphere S2 based at the boundary of c2, which it maps via a
suitably based representative S2 -i L -+ L of -y(c) E .7r2(L) = [S2, L] free,
where c' is a preferred 2-cell above c2. This is a map inducing a on 7r1 whose
based homotopy class is determined by the based homotopy class of F and
the cochain -y. By this construction and the definitions of the equivariant
chain maps induced by the cellular based maps F", F : K -* L, we have the
following observation.

Lemma 3.5 The equivariant chain maps C(F7), C(F) : C(K) -+ ,C(L)
induced by F7, F : K -* L coincide through dimension 1 and their difference
in dimension 2 is the cochain ry : C2(K) 4 ,-7r2(L) = ker a2(L).

Theorem 3.6 For connected 2-complexes K and L, any 0-admissible chain
map v : C(K) -4 aC(L) is realized by a based map G : K -+ L inducing
G# = a on irk.

Proof: Using the 0-admissibility and the simple connectedness, we can con-
struct an a-equivariant map F : K -> L inducing v in dimension 0 and
1. Then the difference -y = v - C2(F) : C2(K) -a ,C2(L) takes values in
ker a2 (L) = H2(L) - ir2(L). By Lemma 3.5, the modification G = F7 : K -4
L realizes the given chain map v.

For any connected CW complex K, the product K x I has the same fun-
damental group as K and admits k x I as a universal covering space. So
the equivariant vocabulary for based maps K -* L applies in a straightfor-
ward way to based homotopies H : K x I -4 L. The uniqueness property
for liftings yields: Any based homotopy H : K x I -* L between based maps
F, G : K -4 L with F# = a = G# : 7r1(K) -4 7r1(L) has an a-equivariant lift-
ing to a -based homotopy H : K x I -5 L between a-equivariant based liftings
F, G : K -+ L. Conversely, any a-equivariant based homotopy H : F G
covers a based homotopy H : F G where F# = a = G# : 71 (K) -4 ir1(L).

Theorem 3.7 For connected 2-complexes K and L, two based maps F, G :
K -4 L with F# = a = G# : 7rl (K) -4 7r1(L) are based homotopic if and
only if their induced equivariant chain maps C(F), C(G) : C(K) -+ aC(L)
are chain homotopic over ZII.
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Proof: For any based homotopy H : F G, the equivariant lifting H
K x I -+ L induces a chain map C(H) : C(K x I) -* aC(L). Then the
7GII-module homomorphisms s : Cn(K) -+ aCn+1(L) (n > 0), given by

Sn(c11) = Cn+1(H)((cn x (0, 1))

define the desired chain homotopy s : C(F) C(G) : C(k) -* aC(L).

Conversely, given a chain homotopy s, there is a 0-admissible equivariant
chain map v : C(K x I) -* ,C(L) defined by vn(c`n-1 x (0,1)) = sn(cn-1)

vn(cn x {0}) = CC(F)(cn), and vn(cn x {1}) = Cn(G)(cn), for all basic cells
of the product complex K x I. By the proof of Theorem 3.6, this chain map
over 7GII has a partial realization through dimension 2 by a partial based
homotopy H : (K X I)2 -+ L between F, G : K - L.

Since L has no 3-cells, C3(L) = 0. So the chain map condition implies
that C2(H) : C2(K x I) ,,C2(L) is trivial on the boundary of the 3-
cells c2 x (0,1). And Theorem 3.4 identifies the induced homomorphism
fl. : H2((K X I)2) -+ H2(L) is with the homotopy module homomorphism
H# ir2((K x I)2) - air2(L). Because the identification H2((K X I)2)
ir2((K x I)2) corresponds the boundary of the 3-cells c2 x (0, 1) with the
homotopy class of its attaching map, it follows that H : (K X I)2 -4 L is
homotopically trivial on the boundary of each 3-cell c2 x (0, 1). So it extends
to the desired homotopy H : K x I -* L.

Theorems 3.6 and 3.7 show that the homotopy theory of based maps of 2-
complexes translates faithfully in the chain homotopy theory of 0-admissible
equivariant chain maps. In Section 4, we present Mac Lane and Whitehead's
codification of these results (MaWh50] in terms of k-invariants and the coho-
mology of groups.

Equivariant world for a presentation model Let P = (x I r) be a group
presentation. The quotient homomorphism

II - II: F(x) -> F(x)/N(r) = lI

gives the group presented by P. As in §1, the model K = KK is a 2-complex
K = c° U cl U c* whose cells are oriented by combinatorial characteristic maps

B1 -+ K and (B2, S1) -+ (K2, K1), where 4 S1 -+ K1 - VSx
spells the relator word r E W (x). For each group element 7r E II, generator x,
and relator r = jji x;', the covering complex k has a 0-cell 7r c, an oriented
1-cell (7r it fix) that joins 7r c to irx c, and an oriented 2-cell (?r c l, 7r
that is attached by the product combinatorial loop

(II x1'1 II Y'21 )f' - (II x1 'x2'Z 11 ,.2)E2..... (II x111 ... xm_11 -lx,.a- 11 q X-)(-,
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where bi = 0 if ei = 1 and b, _ -1 if ei = -1. There is the fundamental
isomorphism A o,,* : 7r1(K) Aut(pr;) corresponding to the basepoints
co and c° E pK1(c°), and the action of H = Aut(pj;) on the cells of k is
incorporated into their notation: 7r' E II carries 7r c, 7r cam, and it cT into 7r'7r c,
7r'7r cx, and 7r'7r e, respectively. Therefore, the equivariant cellular chain
complex C(K) has chain modules C°(K), C1(K), and C2(K) with preferred
free ZII-module bases {C°}, {e,}, and {CT}, and with boundary operators
defined by

a1(c.1)=11 x11 c°-C°=(11x11-1)c°,

and

02(cr) = Ei II x1' 11 c1 + E2 11 xi'x22 II c2 + ... + em 11 X" ...xm= xnm II cm

where r=rjix,',and6i=0ifEi=1andbi=-1 ifei=-1.
The equivariant cellular chain complex C(Is) of the model K = K(P) can
be described succinctly in terms of the presentation P = (x I r) of H, as
follows. We define the chain complex C(P) of the presentation P to be the
ZII-complex of free 7GII-modules

C(P) : C2(P) "(r); C1(P) a Co (P) = ZII

with preferred bases IM}, {bx}, and {b°} in correspondence with the relators
and generators of P. The boundary operators are defined by

a2(P)(bx) _ (II x 11-1)b°

and
82(P)(br) = h(r),

where h : F(x) -+ C1(P) is the crossed homomorphism uniquely defined by
the three properties:

(a) h(x) = bx,

(b) h(x-1)=-IIx11-1 h(x)=-11 x11-1 bx,and

(c) h(W1 W2) = h(W1)+ II W1 II h(W2), for W1, W2 E F(x).

The crossed homomorphism definition is rigged to ensure that the chain com-
plex C(P) of the presentation P is identical to the equivariant chain complex
C(K) of the model K = K2 of P. The point is that everything matches when
the Z11-bases {c }, {cx}, and {eT} of C(k) are identified with the 7GII-bases
{b°}, {b,}, and {b?} of C(P).
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The second boundary operator a2(P) can also be expressed using the Reide-
meister-Fox derivative a

xx
: F(x) -+ 7LF(x) associated with each generator

x E X and the natural extension II - II: 7GF(x) ZII of the quotient
homomorphism II - II: F(x) - F(x)/N(r) = II. The derivative a

xx
is the

unique derivation, i.e., function satisfying

19 w1w2 awl 19 W2

a x a x W, a x , for all Wi, W2 E F (x) ,

whose value on x' E X is &,x' (the Kronecker delta). These derivatives are
developed in Fox's free differential calculus ([Fo53]). Using them, we can
express a2(P) this way:

a2(P)(bT) = II a
Or

II X.
xEX

By Lemma 3.3, we have this description of the second homotopy module in
terms of Reidemeister chains:

Theorem 3.8 The homotopy module 7r2(K) of the model k = KP is isomor-
phic to the Zll-submodule ker (a2(P) : C2(P) -+ C1(P)) of the chain complex
C(P) of the presentation P.

Example 1 Consider the presentation Pm = (x I xm) of the finite cyclic
group 7L,,,. The Reidemeister-Fox derivative of the single relator r = xm with
respect to the single generator x is

m m-1ax x
a+x ax

x
=...=1+x+...+xm-1EZ(F(x)).

ax ax
Let < x, m > = l+x+...+xii-1 E Z(Z,,,). Then 02(Pm)(b,2,) =<x, m> bx
and the chain complex of the presentation Pm is

C(Pm) : Z(Zm)
< x

) Z(Zm) Z(Zm).

The universal covering Pm of the model Pm = c° U cx U cT (called a pseudo-
projective plane) is a stack of m discs xk c (xk E Zm) that share the boundary
circle

-0UcxUx cU x c,17 Ux2 cU...Ux"`-1 cUxm-1 cxUc,

with the disc xk c'T attached beginning at the 0-cell xk c. This shows that
the equivariant cellular chain complex C(Pm), with preferred Z(Zm)-module
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bases {c}, {cx}, and {}, really does coincide with the chain complex C(P,,,).
By Theorem 3.8, the homotopy module R2 (P,,,) is isomorphic to the Z (7Gm)-
submodule ker (< x, m >: Z(Z,,,) -3 7G(7Gm)). This is precisely the ideal
Z(7Gm)(x - 1) < 7G(7Gm), a free abelian group of rank m - 1.
Example 2 Consider the presentation Pm,n = (X, y I xm, yn, xyx-ly 1) of
the finite abelian group II = Zm ® Z,,. The chain complex C(Pm,n) is

zrl3

<x, m> 0
0 <y, n> -1 1

1-y x-1
7GII2 (

x

Zri

where <x, m>= 1+x+...+xm-1 and <y, n>= 1+y+...+yn-1

in ZII. The homotopy module 7r2(Pm,n) of the model Pm,n is isomorphic
to the Z(7Gm (D Zn)-submodule ker a2(Pm,n). By an examination of the 2-
dimensional cellular cycles of the covering complex Pm,n, this can be seen to
be the submodule of Z1I3 generated by the four triples:

(0,x-1,0), (<x, m >,y-1,O), (0,0,y-1), and (< y, n >,0,1 -x).

Exercise 3 Consider any four positive integers m, n, p and q, where (p, m) =
1 = (q, n), and the presentation Pm,n;p,q = (x, y I Xm yn, xpyQx-py-q) of the
finite abelian group II = Zm ® Z, Determine the chain complex C(Pm,n;p,q)
and the homotopy module 7r2(Pm,n;p,q) of the model Pm,n;p,q

See Chapter V for further techniques in determining generators of second
homotopy modules.

The chain complexes C(P) and C(Q) of two group presentations P = (x I r)
and Q = (x I s) that have the same generators and present the same group
II may be identified through dimensions 0 and 1:

C2(P) 82(P) Cl(7') a, (P)
4 Co (P)

C2(Q)
a

C1(Q)
a

Co(Q).

Let K and L denote the models Kp and K(Q) of these presentations.

Theorem 3.9 There exists a homotopy equivalence F : K -* L inducing the
identity isomorphism on the fundamental group II if and only if there is a
Zll-module isomorphism 4 : C2(P) -+ C2(Q) such that 82(P) = 92(Q) 4P.
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Proof: If F : K -+ L is a homotopy equivalence inducing the identity isomor-
phism on 1r1i then the equivariant chain map C(F) : C(K) -+ C(L) restricts
to give the homotopy module isomorphism F# on ker a2:

7r2(K) = H2(K) = ker a2(P) < C2(P)
8w')

C1(K)

1 F# .1w . C2(F) 4 C1(F)

02 (Q)
ir2(L) = H2(L) = ker 52(Q) < C2(Q) C1(L).

Since C1(F) : C1(K) -+ C1(L) is the identity, it follows from the 5-lemma
that t = C2(F) : C2(K) -+ C2(L) is a 7GII-module isomorphism satisfying
52(P) = 52(Q) $.

Conversely, a 7611-module isomorphism 4) : C2(P) -* C2(Q) satisfying the
relation a2(P) = 82(Q) 4) extends by the identity in lower dimensions to a
chain map v : C(K) -* aC(L). By Theorem 3.6, v can be realized by a map
F : K -+ L that is the identity on the common 1-skeleton. By Theorem
3.4, the homotopy module homomorphism F# :.7r2(K) -+ ir2(L) induced by
F is the restriction isomorphism 4) : ker 52 (P) -> ker a2 (Q). It follow from
Whitehead's Theorem 2.12 that F : K -a L is a homotopy equivalence. 0

As in the proof of Theorem 2.12, it is possible to expand disjoint presentations
of isomorphic groups into presentations that have the same generators and
present the same group. But using Theorem 3.9 and that expansion technique
to classify 2-complexes with a prescribed fundamental group encounters this
critical difficulty: the existence of a homotopy equivalence can depend upon
the induced automorphism of the fundamental group.

Exercise 4 Prove that every automorphism of the fundamental group 7Gm of
the pseudo-projective plane Pm is induced by a homotopy equivalence Pm -
Pm (Olum [0165]). Equivalently, show that if ss' - 1(mod m), there is a
homotopy equivalence of the models of the expanded presentations

(x7 y I xm, ysx-1) and (y, x I ym, xs y-1)

inducing the identity automorphism (x H x and y H y) on ir1 = 7m

Exercise 5 Consider the models P,n,n and Pm,n;p,q of the presentations

Pm,n = (x, y I xm, yn, [x, y]) and Pm,n;p,q = (x, y I xm, yn, [xp yq]).

(a) Prove there is a (simple-) homotopy equivalence Pm,n -4 Pm,n;p,q induc-
ing the identity automorphism (x -* x and y H y) on it1 = Zm ® Zn if
and only if pq =_ ±1 mod (m, n) (Schellenberg [Sche73], see [Si76] and
Chapter III, §1.3) .
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(b) Prove there is always a simple-homotopy equivalence P,,,n -# Pm,n;p,q
inducing the diagonal automorphism (x H xp and y H y4).

4 Mac Lane-Whitehead Algebraic Types

This section contains the Mac Lane-Whitehead theory [MaWh50] of algebraic
types of 2-complexes.

4.1 Homology and Cohomology of Groups

H. Hopf initiated the homology theory of groups with his paper ([Ho41]).
He observed that, for complexes K with irl (K) = II, the quotient group
H2(K)/E2(K) is an invariant, where E2(K) is the group of spherical 2-cycles
in the cell complex K, i.e., the image of the second Hurewicz homomorphism.
For 2-complexes, it is very easy to check the invariance of H2(K2)/E2(K2)
using Tietze operations; see Chapter I, footnote 26. This invariant quotient is
called the second homology group H2(H) of the group II; it can be viewed as a
lower bound for the second homology group of complexes K with irl (K) = II,
since it is a quotient of each one.

History has shown that Hopf's discovery is just the two-dimensional portion
of the homology theory of groups. We now begin with some homological
algebra to provide a framework for the initial concepts in the homology and
cohomology theories of a group.

Resolutions Let R be any ring and let M be any (left) R-module. A
resolution of M is an exact sequence of R-modules and homomorphisms

...-+ Cn -+Cn--4 ... -3 C1 -4 Co `+M-4 0.

Alternately, it is a chain map e : C -+ M from a chain complex C = (Cn, 0n)
to M (viewed as a chain complex with Mo = M and 8 = 0) such that
e* : H0(C) M. Every module M has a resolution by projective (even, free)
R-modules, called a projective (or, free) resolution over R. Exactness and the
projectivity yield this basic comparison theorem ([M68]):

Theorem 4.1 If e : C - M is a projective resolution and c' : C' --- M' is
any resolution, then any module homomorphism h : M -+ M' extends to a
chain map u : C -+ C' and any two extensions are chain homotopic.



4. Mac Lane-Whitehead Algebraic Types 89

It follows that there is just one chain homotopy type of a projective resolutions
e : C -+ M of M over R. Hence, for each coefficient module N, these
projective resolutions give just one chain homotopy type of associated chain
complexes

C 0RN:...-*Cn ®RN--Cn_1 ®RN-4...-4 Co ®RN

and just one cochain homotopy type of associated cochain complex

HomR(C, N) : HomR(COi N) -+ ... - HomR(Cn, N) -> ... .

So the derived homology groups Hn(C OR N) and the derived cohomology
Hn(HomR(C, N)) depend upon just the ring R, the resolved module M, and
the coefficient module N. While the resolution e : C -> M is exact, so that
the chain complex C is acyclic, the complexes HomR(C, N) and C 0 R N are
usually not acyclic and their derived groups record algebraic features of the
resolved module M, the coefficient module N, and the ring R.

When the ring R is an integral group ring ZH and the module M is the
additive group of integers Z, with the trivial action, these homology and
cohomology groups are denoted by H,, (II, N) and H' (II, N). They are called
the homology and cohomology groups of the group II with coefficients N.

For any ZII-module N, the invariant submodule In E N : irn = n,Vir E II}
is denoted by Nn. Here are two fundamental lemmas; the first is an exercise
and the second is a project.

Lemma 4.2 For any ZH-module N, H°(II, N) Pz Nn and the cohomology
homomorphism h* : H° (II, K) -* H° (II, N) induced by a module homomor-
phism h : K -4 N is its restriction h : Kn -* Nn .

Lemma 4.3 [CaEi56, Chapter XII, Proposition 2.2]) If II is a finite group,
then Hn(II, P) = 0 for all n > 1 and all ZH-projective modules P.

Theorem 4.4 Let II be a finite group. Consider any projective resolution

...-+ Cn Cn_1 ...-3C1-->ZII--3 Z-+0

of Z over ZrI, with augmentation homomorphism e(E,, En n,,.

(a) There are connecting isomorphisms

21111 H1 (II, ker c) H2(II, ker al) H3(H, ker a2) zt; ...

under which 1 E Z1n1 corresponds to the cohomology classes of the
cochains 91 : C1 -a ker e, a2 : C2 --* ker al, a3 : C3 -# ker a2, ... .
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(b) There are connecting isomorphisms

0 = H°(II, ker E) zz H' (II, ker 8,) : H2(11, ker 82) .. .

Proof: There are the invariant submodules Z" = Z, (ker e)n = 0 and
(M)rl = NZII, the ideal generated by the norm element N = E ,,n 7r of Zfl.
By Lemma 4.3, H1 (II, ZrI) = 0. So by Lemma 4.2, the cohomology sequence
induced by the short exact coefficient sequence 0 -+ ker e -+ ZH -* Z -+ 0
begins with

H°(II,ker E) -!L4 H°(II,Z11) --L4 H°(II,z) -+ H1(II,ker e) -+ 0

11

0 NZII z

Since e(N) _1 II I (the order of the finite group II), there results the isomor-
phism Zjnj Pz H1(II, ker e). By Lemma 4.3, the connecting homomorphisms
in the exact cohomology sequences induced by the coefficient sequences

0-3ker8,, -C.-+

yield the other isomorphisms Hn (II,ker 0 _,) zz H"+1(II,ker a,,), n > 1.
The cohomology class of the cochain e : Co = ZH -+ Z, which generates
HO (TI, Z) = Z'1 = Z, corresponds to the cochains in the statement of the
theorem under the connecting homomorphisms. The proof of (a) is complete
and (b) is established similarly. 0

Aspherical Complexes The homology and cohomology of groups is in-
timately linked to homotopy theory via aspherical complexes. An aspheri-
cal complex M is a connected CW complex whose higher homotopy groups
7r9,(M), n > 2, are trivial. Here is the connection.

Theorem 4.5 The following are equivalent for a CW complex M:

(a) M is aspherical;

(b) M is contractible; and

(c) the equivariant cellular chain complex C(M) provides a free resolution
e : C(M) -+ Z over ZrI, where e(°) = 1 for all 0-cells c of M.
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Proof: By covering space theory, M is aspherical if and only if the uni-
versal covering complex M has trivial homotopy groups, or equivalently (by
Hurewicz isomorphism theorems), trivial homology groups for n > 0. This
homological condition is equivalent to the exactness of e : C(M) -4 Z.

It follows that the chain complex C(M) ®zn Z C(M) and cochain complex
Homes (C(M), N) for an aspherical CW complex with fundamental group II
may be used to calculate the homology and cohomology groups of H.

Corollary 4.6 If M is an aspherical complex with fundamental group II,
there are isomorphisms Hn(M) Hn(H, 7G) and Hn(M, N) Hn(II, N).

Since the 3-skeleton of an aspherical complex M with fundmental group n
can be constructed from any complex K with irl (K) = II by attaching 3-
cells via representatives of generators of its second homotopy group, one has
H2(M) H2(K)/E2(K), where E2(K) is the group of spherical 2-cycles in
the cell complex K. So Corollary 4.6 contains Hopf's original definition of
H2(II) ([Ho41]). On the more algebraic side, if one extends a chain complex
C(P) of a presentation P = (x I r) of II into a free resolution, it is possible
to obtain Hopf's formula

H2(II) = (N(r) fl [F(x), F(x)])/[N(r), F(x)].

For a proof, see K. Brown's book ([Br82, pp 42-43]).

Algebraic 2-type The Mac Lane-Whitehead theory [MaWh50] of algebraic
type of 2-complexes is based upon this philosophy: an unfamiliar object can
be classified by transforming it into a unique object, while recording the steps
of the transformation.

Any 2-complex K is the 2-skeleton of some aspherical complex M with fun-
damental group II; one takes M2 = K and inductively constructs Mn+l by
attaching (n + 1)-cells to Mn via maps representing generators of -7rn(Mn).
While the aspherical complex M is uniquely determined up to homotopy type
by its fundamental group, its not clear how to implement the philosophy just
advocated. How much of the transformation process need be recorded?

In an equivalent algebraic construction, the augmented equivariant chain com-
plex e : C(K) -* Z extends to a free resolution

C(H) : . . . -* C3(H) -+ C2(K) -i C1(K) -* 0

of Z over 7LH. The chain homotopy type of C(H) is unique for the fundamental
group II by the comparison theorem (Theorem 4.1). We shall show that
the philosophy to classify K is implemented by recording just the first new
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boundary operator 83 : C3(II) --* C2(K) in the extension of the augmented
chain complex C(K) -> Z into the free resolution C(H).

By Lemma 3.3 and the exactness of C(II), 83 takes values in ker 82(K) _
H2(K) =_72 (K) and so determines a cochain YAK : C3 (H) -+ ir2(K). The chain
property 83 84 = 0 implies that the cochain K K is a C(11)-cocycle and therefore
it defines a cohomology class {'cr; } E H3(lI, 7r2(K)). This cohomology class
is called the k-invariant of the 2-complex K; according to the comparison
theorem, it depends only on the augmented chain complex C(K) -4 Z and
not extension C(II) chosen.

Theorem 4.4(1) yields this basic k-invariant calculation:

Theorem 4.7 Let K be a connected 2-complex with finite fundamental group
11. Then the cohomology group H3(II, 7r2(K)) is cyclic of order 111, and the
k-invariant {r-K} is a generator.

We shall show that a 2-complex K is determined up to homotopy type by its
fundamental group H, its second homotopy module 7r2(K), and its k-invariant
{'cK} E H3(II, ir2(K)). So the k-invariant may be interpreted as a record of
how the fundamental group and the second homotopy module are assembled
to form the homotopy type of the 2-complex.

For convenience in the proof, we define an abstract algebraic 2-type to be a
triple (II, 7r2, {rc}) consisting of a group II, a 7L11-module it2 and a cohomology
class {ic} E H3(II, ir2). The triple T(K) = (iri(K), ir2(K), {KK}) is the alge-
braic 2-type of the 2-complex K. A homomorphism (a, /3) of algebraic 2-types
(II, 7r2, {/c}) and (,=, 2i {T}) consists of a group homomorphism a : II -4
and a 7LII-module homomorphism Q : 7t2 - g2 such that the cohomology
classes {ic} and correspond under the homomorphisms

H3(a, S2)-*H3(nv -H3(ll, it2)

defined as follows: Let e : C(II) -* 7L and p : C(,=) -* Z be projective
resolutions of Z over ZII and 7L,=, respectively. Via the change of module
structure induced by the group homomorphism a : 11 -4 the second reso-
lution becomes a (not necessarily projective) resolution p : ,,C(=) -+ Z of Z
over 7LII. By the comparison theorem (Theorem 4.1), the identity 1 : Z -* Z
extends to a chain map C(H) -+ ,C(') that is unique up to chain homotopy.
So its induced cohomology homomorphisms are determined by a and may
be denoted by a* : H*('E,i;2) - H* (II, Finally, the 7LII-module homo-
morphism Q : ir2 -* aS2 induces the change of coefficient homomorphisms
,3* : H*(ll,7r2) -> H*(II,a 2).
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Lemma 4.8 Let K and L be connected 2-complexes with fundamental groups
II = 71(K) and E = irl (L). A group homomorphism a : irl (K) -+ 71 (L)
and Z11-module homomorphism Q : 7r2(K) -+ ,ir2(K) are induced by a map
F : K -* L if and only if they constitute a homomorphism

(II,1r2(K), {1cK}) -+ ('-, 12(L), {,cL})

of the algebraic 2-types of the 2-complexes K and L

Proof: The comparison theorem (Theorem 4.1) implies that the equivariant
chain map C(F) : C(K) -4 aC(L) for a map F : K -* L extends over free
resolutions e : C(II) -> Z and p : C(°) -> Z to a chain map v : C(II) -> ,, C(2)
by which we may calculate a* : H3(8,.2) -* H3(II,81;2). By Theorem 3.4
and the definition of the k-invariants, the chain map v gives the commutative
diagram:

4 7r2(K) < C2(K)

a=F# . 1 1C2(F)

aC3(=-) air2(L) < aC2(L)

This yields the desired equality ,Q*({IGK}) = a*({KL}) in H3(II,ae2).

Conversely, the equality /3*({KK}) = a*({,cL}) in H3(II,a 2) implies that for
any chain map v : C(II) -4 aC(s) extending 1 : Z -4 Z, the cochains

KL V3 : C3(II) -+ aC3(") i ,7r2(L)

and
Q kK : C3(II) -+ ir2(K) -4 a7r2(L)

are cohomologous. This means that there is a module homomorphism

ry : C2 (k) -+ air2(L)

such that

N KK -'cL V3 = ry 83(11) : C3(II) -+ C2(K) - air2(L)

Then the three homomorphisms vo, v1i and v2 + ry constitute a chain map
C(K) -> aC(L) inducing 0 : 7r2(K) -4 a7r2(L) as in Theorem 3.4. By The-
orem 3.6, this chain map (when 0-admissible) is realized by a based map
F:K--Lwith F#=aonirlandF#=/3onir2.
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Theorem 4.9 (Mac Lane-Whitehead [MaWh50]) Connected 2-complexes
are based homotopy equivalent if and only if their algebraic 2-types are iso-
morphic.

Proof: This follows from Lemma 4.8 and Whitehead's Theorem 2.12. 0

To derive from Theorem 4.9 a homotopy classification of connected 2-complexes
with a prescribed fundamental group II, it is necessarily to determine exactly
which abstract algebraic 2-types (II, ir2i {K}) are realized by 2-complexes and
how many isomorphism classes are represented by them. An initial step in
this determination is provided by statement (40) of Chapter I: any two finite,
connected, CW-complexes K and L with isomorphic fundamental groups be-
come (simple-) homotopy equivalent when summed with suitably many copies
of the 2-sphere S2. This homotopy version of Tietze's Theorem for finite
group presentations turns the homotopy classification into a problem of can-
cellation of 2-sphere summands. In terms of Theorem 4.9 and algebraic 2-
types (II, 1r2, {rc}), the homotopy classification problem is one of cancellation
of free 7L1I-summands from the second homotopy module 1r2i in a manner that
preserves k-invariants.

Cockcroft and Swan [CoSw6l] employ algebraic 2-types and a classification of
Z7L modules to handle any prime order, cyclic, fundamental group .7r1 = Z p.
For the general finite cyclic case 7r1 = Z,,, Dyer and Sieradski [DySi73] invoke
the more basic Theorem 3.9 and the Jacobinski cancellation theorem to cancel
free ZZn-summands from 7r2. These works show that 2-complexes with 1r1 =
7Gn are classified by their Euler characteristic: two connected 2-complexes with
isomorphic finite cyclic fundamental groups are homotopy or simple-homotopy
equivalent if and only if they have the same Euler characteristic.

The homotopy and simply-homotopy classifications have been completed for
finite abelian fundamental groups (see Chapter III); in general, the Euler
characteristic alone does not classify these 2-complexes, but their homotopy
and simple-homotopy classifications do coincide. More recently, it has been
shown independently by Metzler [Me90] and Lustig [Lu911] that for general
fundamental groups, the homotopy classification and the simple homotopy
classification disagree; see Chapter VII.

4.2 Maps between 2-complexes

Action of the Cohomology Groups Let K and L be 2-complexes with
fundamental groups 7r1(K) - II and irl(L) - For a group homomorphism
a : H - E and a ZII-module homomorphism /3 : ir2(K) -+ ,7r2(L), let [K, L],,
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and [K, L],,,,3 consist of the based homotopy classes of based maps F : K -4 L
with F#=a on r, and F# 0 on 7r2.

The modification F7 : K - L of a based map F : K -- L by a cochain
y : C2(H) = C2(K) - a7r2(L), as in Lemma 3.5, defines an action of the
cochain group

C2(H, air2(L)) = Homzn (C2(H), air2(L))

on the based homotopy set [K, L]a.

Basic homotopy classification results The following are left as exercises in
application of the equivariant techniques of Section 3:

Lemma 4.10 For [F] E [K, L],,, and y E C2 (II, ,7r2(L)), we have

(a) [F] and [F7] induce the same module homomorphism on ir2 if and only
if y is a ZH-cocycle.

(b) [F] = [F7] if and only if y is a 7LH-coboundary.

Theorem 4.11 There exist actions of the cohomology group H2(K, ,7r2 (L))
on [K, L]a and the cohomology group H2(II, ,7r2(L)) on [K, both defined
by [F]{7} = [F7], satisfying the following properties:

(a) [F]{7} = [F] if and only if {y} = 0,

(b) ([F]{7}){a} = [F]171+01, and

(c) [F]{7} = [F]{a} if and only if {y} = {A}.

Theorem 4.12 The action of any class [F] E [K, L]a,a determines bijections

[F](-) : H2(K, air2(L)) -+ [K, L],,

and
[F](-) : H2(H, ,7r2(L)) -4 [K, L]a,p.

Corollary 4.13 Homotopy classes [F] E [K, L]a are uniquely determined by
their induced module homomorphisms F# : ir2(K) -* ,,.7r2 (L) if and only if the
cohomology module H2(ll, ,7r2(L)) is trivial.

Proof: This is the second bijection of Theorem 4.12.
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Corollary 4.14 Based maps K -* L inducing the same isomorphism a of
finite fundamental groups are homotopic if and only if they induce the same
module homomorphism,Q on 1r2.

Proof: When a is an isomorphism, we have H2(II,,,ir2(L)) H2(II,ir2(L)).
Because II is finite, H2(11, w2 (L)) is trivial by Theorem 4.4(2). So Corollary
4.13 implies Corollary 4.14. 0



Chapter III

Homotopy and Homology
Classification of 2-Complexes

M. Paul Latiolais

When one wishes to classify 2-complexes, the first classification scheme one
must consider is homotopy type. In Section 1, we will define an obstruction to
homotopy equivalence, called bias, but show that it is actually an obstruction
to homology equivalence. In Section 2, we will refine the bias to the Browning
obstruction and use it to get a complete classification of 2-complexes with
finite abelian fundamental groups. In Section 3, we will give the currently
known facts on the homotopy classification for other fundamental groups.
Subsections 3.2 and 3.3, as well as the list of problems are co-authored with
Cynthia Hog-Angeloni.

1 Bias Invariant & Homology Classification

The concept of bias is based on Whitehead's Theorem (Chapter II, Theorem
2.12). We will define bias using equivariant chain maps on the equivariant
chain complexes of the universal covers of 2-complexes, as discussed in Chap-
ter II, §3.2. Theorem 3.6 of Chapter II identifies maps of 2-complexes with
chain maps for the universal coverings.

The bias-invariant was first used in [Me76] and then in [Dy76], [Dy79], [Si77],
[SiDy79] to show that certain 2-complexes were not homotopy equivalent.
Dyer showed in [Dy86] that the bias invariant, in fact, detected integral ho-
mology equivalence. In §1.1, we will motivate and define bias as an obstruc-
tion to homotopy equivalence. In §1.2, we will show that bias is the complete

97



98 Latiolais: III. CLASSIFICATION OF 2-COMPLEXES

obstruction to homology equivalence (with induced isomorphism on funda-
mental groups). In §1.3, we will make specific calculations of the bias to
distinguish the homotopy types of important examples.

1.1 Bias as a homotopy obstruction

Recall that a homotopy equivalence of CW-complexes is simply a map that in-
duces an isomorphism on all homotopy groups. For the 2-dimensional version
of Whitehead's theorem, see Chapter II, Theorem 2.12,

In order to see what is involved in constructing the bias, let us consider
two 2-complexes, K and L, and a map f : K -+ L. If f is a homotopy
equivalence, it induces an isomorphism on all homotopy groups. In particular,
f : ir1(K) -+ ir1(L) must be an isomorphism. Therefore, in order to start the
classification of 2-complexes up to homotopy type, we must first assume that
the fundamental groups of K and L are isomorphic.

Our second step is to check the second homotopy groups of two 2-complexes
with the same fundamental group. This would seem much harder to accom-
plish. However, Theorem 3.4 of Chapter II says that the second homotopy
groups are the second homology groups of the universal covers. Consequently,
we will look at the cellular chain complexes of the universal covers k and L
of K and L respectively and compare them. We will also consider the homo-
morphism f2 : H2(K) -* H2(L) induced by f. This is, in fact, easier than it
sounds.

Since K and L are simply connected, the first homology groups vanish. We
have exact sequences:

0-+ H2(K)-+ C2(K)-+ Cl(K)-+ Co(K)->Z->0

and

0-4H2(L)-4C2(L)-*C1(L)-+Co(L)- Z-+0.

Let us assume for the moment that f is the identity on the 1-skeletons of K
and L. After lifting the cell structures of K and L to K and L, the map will
still be the identity on 1-skeletons. That gives us the following diagram:

0 - H2(K) -4 C2(K) -4 C1(K) -> Co(K) -4 Z -> 0

0 -+ H2(L) - C2(L) -+ C1(L) - Co(L) -* Z -+ 0.
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The Five Lemma implies that f2 is an isomorphism if and only if f2 is an
isomorphism. Notice also that the homomorphism f2 can be represented as a
matrix over 7Gir1(L) (which we are identifying with Zirl(K) via ff : irl(K)
7rl(L)), since C2(K) and C2(L) are both free modules over the fundamental
groups of K and L. Now these module structures over the fundamental groups
are somewhat complicated, so let's forget about them, mathematically. That
is, in the matrix representing 12, maps each group element to 1. If 12 is an
isomorphism, the resulting matrix will be invertible over Z. Consequently, if
the matrix over Z is not invertible, then our original map f is not a homotopy
equivalence.

The above idea is the basis of the definition of the bias invariant. To define
bias, we will not assume that f is the identity on the 1-skeleton. However,
when one actually computes bias, it is most convenient to assume that f is
the identity on the 1-skeleton, as we will see in §2.2.

The construction of the bias invariant allows for generalization to higher di-
mensions. Though this generalization will not be used in this book, it is useful
to know that construction work for the more general (G, d)-complexes.

Definition 1.1 Let G be group and d > 2 an integer. A (G, d)-complex K
is a finite connected CW-complex of dimension d with 7rl (K) = G and whose
universal cover is (d - 1)-connected.

In the case of dimension d = 2, the condition on the universal cover in the
above definition is automatically satisfied. Given two (G, d)-complexes K and
L, we would like to know in general whether they are homotopy equivalent.

We first assume that K and L have the same Euler characteristic. Given any
homomorphism a : irl (K) --4 7rl (L), we can construct a map f : K -> L
with a = ff: 7r1(K) -> irl (L), the induced homomorphism from f. If a is
an isomorphism, the map bias, b(a), which will be defined below, will tell us
whether there exists a homology equivalence f with f = a.

So let f : K -> L be a cellular map with ff = a : 7r1(K) -+ 7r1(L) an
isomorphism. As we learned in Chapter II, § 3, the CW structure of any
complex K may be "lifted" to a CW structure on its universal cover k. Also,
given a particular choice of preferred base point lifting the 0-cell, each k-cell
in K together with each group element of irl (K) = G determine a unique
k-cell in K. This G-structure on k is consistent with the boundary of each
cell, so carries over to the algebraic structure on the chain complex of the
universal cover K.

Consider the following diagram involving the chain map induced by the lifting
f : K -+ L of the cellular map f : K -> L.
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Hd(K) y Cd(K)

111
jfd

Hd(L) aCd(L),

(1)

where the a subscript refers to the change of ring procedure associated to a,
as in Chapter II, § 3.2. We will modify id using ir2 elements (Chapter II,
Section 3) without altering f;, i < d, to attempt to make fd an isomorphism.

Lemma 1.2 Let K and L be (G, d) -complexes as above, and let f : K -* L
be a cellular map which induces an isomorphism a on the fundamental groups.
Let y : Cd(K) -+ ,Hd(L) be a module homomorphism. Then there exists a
map g : K -+ L such that

(a) 9i = f:: Ci((K) -a aCi(L), for i < d

(b) gd = Id + t o -y: Cd(K) -+ aCd(L), and

(c) gd = (fd + y o t) : Hd(k) -4 Hd(L), where t is the appropriate inclusion
homomorphism.

This lemma is a generalization of Theorem 3.6 of Chapter II. The technique
of the proof is patterned after [DySi73], p. 41. For an older reference, see
[Pu58].

Proof: Note that the d-cells of K correspond to the generating set of Cd(K)
as a free ZG-module. If D« is any d-cell of K, the corresponding element of
the generating set of Cd(K) is denoted by D(d). The image of b(d) under the
homomorphism ry is an element of Hd(L) = lyd(L). Let A. As an
element of lyd(L), A is represented by some map p : Sd -4 L. Note that we
are equating Hd(L) with lyd(L) to avoid too much notation (by the use of a
Hurewicz isomorphism and covering projection isomorphism).

Define the map h : K --> K V Sd to be the identity on K \ D(d) and to map
D(d) onto D(d) V Sd by collapsing some (Sd-1, e) C (D(d), e0) to eo (where eo
is the wedge point) and the ball bounded by Sd-1 onto Sd. The rest of D(d)
gets stretched to cover D(d)

Now compose
K- h rK V Sd -f L,
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where f U p is the obvious adjunction of f and p on D(d) V Sd. Call the above
composition map g. Notice that (g)2 is the same as f;, for i < d, and that

(g)d(D(d>) = d(D(d)) + t 0

Now continue the process by changing g as above with the next d-cell. Since
the complex is finite, the process is finite.

Let Ed(K)C Hd(K) be the spherical elements of Hd(K). That is, Ed(K) is
the image of the Hurewicz homomorphism lyd(K) -4 Hd(K), or alternately,
the image of the projection p* : Hd(K) -* Hd(K). So diagram (1) projects to

Ed(K) " Cd(K)

fd l lid
Ed(L) " Cd(L).

Any homomorphism S : Cd(K) -* Ed(L) may be lifted to some homomor-
phism b : Cd(K) -> ,,Hd(L) as follows: First, compose S with the projection
p.: C(K) -+ C(K). Since C(K) is a free module and q.: H((L) - E(L)
is onto, it follows that S op. : C(K) -* Ed(L) can be lifted to S : Cd(K) -4
Hd(L), so that S o q b. Therefore, by Lemma 1.2, given any homo-
morphism S : Cd(K) -4 Ed(L), there exists a map g : K -4 L inducing the
isomorphism a, such that gd = fd + t o S and gd = fd + S o t (t being the
appropriate inclusion homomorphism from Hd -4 Cd).

Exercise 1.3 Prove that Hd(K) is a direct summand of Cd(K).

Now let 0: Hd(K) -* Ed(L) be some other homomorphism. Since Hd(K) is
a direct summand of Cd(K), we can extend ,Q to Cd(K) by letting it be zero
on the other factor. We have proved the forward direction of:

Lemma 1.4 Let K and L be (G, d) -complexes and let S : Hd(K) -4 Ed(L)
be any homomorphism and f : K -+ L any map. Then there exists a map
g : K -4 L such that

f. = g.: iri (K) i (L)
and the induced homomorphism gd : Hd(K) -4 Hd(L) is the homomorphism

fd + t o S : Hd(K) - Hd(L).
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Conversely, given two maps f : K - L and g : K -+ L with f. = g. :

7rl (K) -4 7rl (L), then gd = fd + t o 8 , for some b : Hd(K) -+ Ed(L), as below:

Ed(K) A Hd(K)

AI aI/ lid

Ed(L) `y Hd(L)

Proof: The first part follows from the previous lemma. For the converse,
consider the commutative diagrams (with horizontal exact sequences):

0 -* Ed(K) -4 Hd(K) -4 Hd(lri(K)) - 0

I A
lid

jHd(M

0 -+ Ed(L) -+ Hd(L) -4 Hd(lr1(L)) -4 0

and
0 -+ Ed(K) -* Hd(K) -* Hd(rl(K)) -4 0

j9do j9d jHd(g-)

0 -a Ed(L) -p Hd(L) - Hd(lr1(L)) -+ 0

The homomorphism Hd(f.) : Hd(7rl(K)) -* Hd(lrl(L)) is an isomorphism,
whenever f. is an isomorphism, by a theorem of H. Hopf [Br82]. Note that this
isomorphism only depends on the induced iomomorphism f. on fundamental
groups. Consequently Hd(f.) = Hd(g.).

Since the two diagrams agree on the right, then the images of fd and gd agree
up to an element of Hd(L). That is precisely what we are trying to prove.

Exercise 1.5 Prove that for any choice of bases, the matrices representing
f O and fd have determinants that differ at most by sign.

We are now ready to construct a map bias, b(a), where a E Iso(irl (K), 7r1(L)) .

Let f : K -4 L be a map with f. = a : irl (K) -* 7r1(L) an isomorphism. From
our earlier discussion, we know that f is a homotopy equivalence if and only
if Al : Hd(K) -+ Hd(L) is an isomorphism. If f is a homotopy equivalence,
then fd : Ed(K) -4 Ed(L) will also be an isomorphism. If X(K) = X(L), then
rankzEdK = rankzEdL.



1. Bias Invariant & Homology Classification 103

Choose a set of free generators for Ed(K) and for Ed(L). Given these bases,
the homomorphism fd : Ed(K) -* Ed(L) can be expressed as a matrix, Mf,
with entries in Z. So f2 is an isomorphism if and only if the determinant of
Mf is ±1. In particular, if the determinant is not ±1, then f cannot be a
homotopy equivalence. This det[MM] is independent of bases modulo sign.

Now the obvious question is, "What will be the effect of the modification by
ire elements on the determinant of the matrix Mf, where Mj represents the
induced homomorphism Ed(K) -* Ed(L)?" Consider, again the diagram:

Ed(K) A Hd(K)

fdI bI/
I fd

Ed(L) y Hd(L)

From the above exercise, det[Mf] = ±1 if and only if the determinant of the
matrix Mf representing fd is also f1. Henceforth, we will focus on Mf rather
than M. Assume for the moment that the respective bases elements make the
inclusion homomorphisms diagonal. That is, if ai, ... , at are the generators
of Hd(K), then the generators of Ed(K) can be expressed as s1, ... , s,., for
r < t, and the inclusion homomorphism can be expressed as s, H ni vi ,

where ni E Z. Similarly, let the generators of Hd(L) be -yl, ... , Yt, then under
our assumption the generators of Ed(L) will be gl, ... , g,. , with the inclusion
homomorphism expressed as gi H mi -yi, for mi E Z. In this set up, it is easy
to see that the modification by 7r2 elements will effect the determinant of the
matrix representing fd by multiples of the mi's. Define m = gcd{mi}, then it
is clear that if det[Mf] # ±1 mod m, then there is no homotopy equivalence
g : K -4 L with g. = a. In fact, as we will see later, det[Mf] 54 ±1 mod m,
if and only if there is no homology equivalence g with g. = a.

Proposition 1.6 Let Z' y Zt be an injection with matrix (mid) with respect
to some bases of Z and Zt. If 1 # m = gcd{mid}, then m is also the
gcd{torsion coefficients of Zt/t(Zr)}. If 1 = gcd{mi3} then Zt/t(Zr) can be
generated by fewer than t generators.(Compare with p.2 of [Dy86].)

Proof: Diagonalizing the matrix (mid) will not change the gcd{mid}.

Definition 1.7 (Map Bias) Let K and L be two (G,d)-complexes and let
f : K -4 L be any map with f. = a : 7rl (K) -> 7rl (L) an isomorphism. Let
the set {mif} be the integer coefficients of the generators of Ed(L) expressed
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as elements of Cd(L) with its standard set of generators (from the d-cells of
L). Let m = gcd{m;3}. Let Mf be the matrix representation of the induced
homomorphism fd : Hd(K) -> Hd(L) with respect to any bases of Hd(K) and
Hd(L). Define the map bias b(a) = det[Mf] E Zm/ ± 1.

Note that, by Proposition 1.6, m = gcd{torsion coefficients of Cd(L)/Ed(L)}
= gcd{torsion coefficients Hd(L)/Ed(L)}, and that Hd(L)/Ed(L) is the ho-
mology invariant Hd(G) of the group G, by [Br82, Theorem 5.2].

Lemma 1.8 The map bias, b(a) E Zm/ ± 1, depends only on K, L and a.
That is, b(a) is independent of the choice functions f : K -> L, with f* = a.

Proof: Given two maps f and g which induce a on 7r1, then the induced
homomorphisms on Ed will differ only by homomorphisms of the form t o b,
where d : Hd(K) -+ Ed(L) is some homomorphism and t : Ed(L) -- Hd(L)
is the obvious inclusion. But adding in such homomorphisms will only effect
the determinant by multiples of the coefficients {m;j} of the generators of
Ed(L). This has no effect modulo m and sign, since m = gcd{mZ3}.

Theorem 1.9 Given a pair of isomorphisms a : 7rl (K) -> 7rl (L) and X :
7rl(L) -* irl(L), then b(X o a) = b(X)b(a). (Compare with [Dy86], Lemma 1.)

Exercise 1.10 Prove theorem 1.9, and that the bias is a unit in Zm/ ± 1.
Consequently, bias can be measured in the group of units Z;,,/ ± 1.

Definition 1.11 (Bias) Let(3 : Aut(irl(L)) -4 Z /fl be the homomorphism
that sends -y H b(-y) E Z / ± 1, and let D C Z; / ± 1 be the image of
,3. Define the pair bias b(K, L) - [b(a)] E Z / f D, for any isomorphism
a : 7rl(K) -> irl(L).

Theorem 1.12 If b(K, L) 0 1 E Zm/ f D, then K and L are not homotopy
equivalent.

Proof: We prove the contrapositive. Suppose K and L are homotopy equiv-
alent. Let h : K -; L be our homotopy equivalence, with h* = 3 : irl (K) -)
7rl(L). Let a : irl(K) -+ ff (L) be another isomorphism. We must show that
[b(a)] = 1 in D. Since h is a homotopy equivalence, it will induce an
isomorphism on the homology groups. By Theorem 1.9 above,

b(Q)b(,3-1 o a) = b(,6 o,3-1 o a) = b(a).

But, ,6-1 o a E Aut(irl (L). Consequently, 1 = [b(,3)] = [b(a)] E 7L ,,/ ± D.

Two interesting questions immediately arise for a given G and d:



1. Bias Invariant & Homology Classification 105

Is the bias surjective onto Z,,/ ± D?

What does D look like?

Note that Metzler used the idea of bias in [Me76], to give the first known
examples of homotopy inequivalent 2-complexes with the same finite funda-
mental group (namely, (765)3) and the same Euler characteristic.

1.2 Bias as the complete homology obstruction

A map f : K -+ L of (G, d)-complexes is a homology equivalence, if f induces
isomorphisms irl(K) -* 7r1(L) and Hk(K) -3 Hk(L) for all k < d. Before we
use the bias to distinguish homotopy types of (G, 2)-complexes, let us point
out that the bias is really detecting homology equivalence:

Theorem 1.13 (Dyer [Dy86], Theorem 2) Let a : irl (K) -> 7rl (L) be an
isomorphism. Then there exists a homology equivalence f : K -+ L, with
f* = a, if and only if b(a) - ±1 mod m.

Proof: Let f : K -4 L be a map such that ff = a and det[Mf] = b(a), ± 1
mod m. By Lemma 1.4, each other map K -+ L inducing a changes fd only
by adding a homomorphism 6 : Hd(K) -+ Ed(L). Such a change only alters
the determinant of Mf by multiples of m. So no map g : K -+ L with g* = a
has M. an isomorphism as det[M9] - det[Mf] ; ± 1 mod m. So there is no
homology equivalence with the given identification of fundamental groups.

Now suppose b(a) = ±1 mod m, then there exists a map f : K -* L with
f* = a and det[Mf] ±1 mod m. Consider the diagram:

0 -+ Ed(K) -> Hd(K) -> Hd(G) - 0
fd I fd 1Hd(a)

0 -1 Ed(L) -+ Hd(L) -+ Hd(G) -* 0

Remember that Hd(a) is an isomorphism. The above diagram may be ex-
pressed as:

0 -+ 76n Zn+k -+ 7Zml X ... X Zmn X 76k -4 0

IMj 1M1 Hd(f*)

0 -+ Zn -+ Zn+k --+ Zml X ... X 76mn X 7k -+ 0



106 Latiolais: III. CLASSIFICATION OF 2-COMPLEXES

By a change of basis in the groups Z" and Zn+k, we may assume that the
above inclusions are diagonal homomorphisms, and that each basis element
B; E Z'2 is sent to m; 'r, E Zn+k, where {r;} is the corresponding basis of
Zn+k and the m2 # 1 are the above torsion coefficients of Hd(G). The basis
elements of the above groups may also be chosen so that ml divides m2 ,

m2 divides m3 , etc. Note that Hd(f.) projected to the free summand Zk
will be an isomorphism (as will Hd(f*) restricted to the torsion subgroup
Z,", x ... x 7G,,,,,). Consequently, Mf will be invertible if and only if the
restricted homomorphism from Z" to Z' is invertible. We may, therefore,
restrict our attention to

,,,, X ... X Zm 00

I

Z"Z" 7G

MO IH:a)
0 -4 Zn -4 Zn --) Zm1 X ... X Zm -> 0

Let us assume that ml 54 1. We will leave the case where ml = 1 as an exercise
below. The proof will continue by induction on n, the rank of Ed = Zn as an
abelian group. Suppose n = 1, i.e. Ed = Z, then det[Mf] - ±1 mod m, where
m is the single torsion coefficient of Hd(G). This implies that Mf = (6),
where d = ±1 + rm, for some r E Z. We want to try to modify f via a
modification by 1r2 elements (Lemma 1.4), so that the resulting function will
be an isomorphism on Hd (or equivalently, an isomorphism on Ed). Consider
the diagram:

z -4 z Z..

I

x(S ry ,l I X6

1

x6

z z Zm

Notice that ry o (x m) is multiplication by m followed by multiplication by
some chosen s E Z. Consequently, -y o (x m) is multiplication by sm, with s
chosen arbitrarily. So Mf +'y o (xm) = (b + sm) _ (f1 + rm + sm). If we
choose s = -r, we are done.

Now suppose Ed - V2 , for some n. Consider, again, the diagram:

0 4 Z"

IMI

Z" .4 Zm, X ... X Zm.4 0

MJHd(a)
0 -4 Z'2 Z" .4 Zm, X ... X Zm .4 0
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This time we will use y to modify Mf, to get Mf to be invertible. By a lemma
of A. Sieradski (See [Dy85], Appendix B), we may assume that Hd(a) is a
diagonal homomorphism, and since Hd(a) is an isomorphism, the matrix of
Hd(a) is a diagonal matrix of the form:

dl, ..., 0

0, ..., do

where each d; is relatively prime to each m2. (Note: the following argument
is copied from the proof of Theorem 6.9, p.145 of [Dy86]). The above matrix
may be expressed as:

1,
d1, 0, ..., 0 d1, 0, ..., 0

0, ... , dn_1i 0 0, ... , dn.-1 . dn, 0

0, ..., 0, d, 0, ..., 0,
0,

1
0

1

0 dn, 0
0, 0 do

where d' do - 1 mod mn (and hence mod mn-1). Both matrices on the right
have determinant ±1 mod m. Consequently, we have reduced the problem to
the 2 x 2 case. Since we are assuming that Mf has determinant ±1, we may
now assume that Mf is of the form

(dl + ml a m1 b

Consequently, Hd(a) will have determinant d1d2 = ±1 mod m1. Note that a
suitable homomorphism y in the modification by 7r2 elements will change the
matrix

di+

into the form
d1 0

( 0 d2

So we may assume that fd is of the form

0 d2)(dl 0 /

Now we want to find a -y so that the determinant of fd is ±1. So we want
now to find new a, b, c, and d, so that

dl+mi.a m1b
( m2c d2+m2d/
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will have determinant ±1. Our problem is now merely combinatorial. We
need to find an a, b, c, and d, so that dld2+mim2(ad-bc)+mlad2+m2d1 = ±1.
Let dld2 = ±1 + kml, and choose a and c so that -k = cm2 + ad2 (possible
since (m2i d2) = 1 ). Choose d = 0 and b = -1, then

d1 + mla -ml
det C _

m1c d2

dld2+m1ad2+mlm2c= ±l+kml+mlad1+mlm2(-d2a-k)/m2 = ± 1.

Exercise 1.14 Prove Theorem 1.13 in the case where gcd{mi} = 1.

Corollary 1.15 Two (G, d) -complexes K, and L are homology equivalent if
and only if b(K, L) = 1 in Z* / ± D.

1.3 Homotopy distinction of twisted presentations

In the homotopy classification of (G, 2)-complexes with finite abelian G, we
must first deal with recognizable presentations of such groups. We can express
G as Zm, x ... x Zm with mi1mi+1 and m1 > 1. Its standard presentation

P= (a1,...,a1, I a1 ,a22,...,a, , 1ai,a9], 2 <

has commutator relators [ai, aj] = a;ajai 1a.i 1. Note that if r is a number
relatively prime to m1, then {ar, a2.... , a7,,} also generates G. Consequently,
we can define a twisted presentation of G as

P, _ (a1i...,a,, I [ai,a2], [ai,a.l], i < j, (i,j) 0 (1,2) )

We could twist all the generators independently, but we will discover later
that this gains no new homotopy types.

Remark: Let K1 be the model of the standard presentation P and K, the
model of the twisted presentation Pr above. In Definition 1.11, the modulus
for the bias b(K3, Kr) for a pair of twisted complexes is gcd{torsion coefficients
of H2(G)}, which equals m1 = gcd{ml,... , m,,} in this setting.

Theorem 1.16 For K, and K3i the bias b(K3, Kr) _ [s]-1[r] E 7G,*/1j/ ± D.

Proof: Let s' be an integer such that s s' _- 1 mod m1. In particular, let
s s' = 1 + k m1. We can assume that k is positive. Check that

s-1 3'-1 ml-1

ai) ai) + 1.
i=O j=o i=O i=O



1. Bias Invariant & Homology Classification 109

Using Fox's free differential calculus (Chapter II Section 3.2), the respective
and C2(Kr)-*C1(Kr) are represented by

the matrices

0 0

0

M2-1
E a2
i=0

an-1 an

0 0

0 0

0 0 ... 0 E atn
i=0

ai

mi-1
E ai
i=0

0

a2

0an-1L, t

i=0

R(S)12
s-1 s-1

(>2 a') (1 - a2) (>2 ai)(a1 - 1) ... 0 0
i=0 i=0

R(s)(n-1)n ` 0 0 ... (1 - an) (an-1 - 1) )

and

R(r)1

R(r)2

hi

ml-1
E ai
i=0

a2 an-1 an

0

M2-1
0 >2 a2

i=0

0 0

0 0

r-1 r-1
ai)(1 - a2) (>2 ai)(a1 - 1)

i=0 i=0

0 0

0 0

ani_
0

1

i=0

0 E an
i=0

0 0

R(r)(n-1)n \ 0 0 ... (1 - an) (an-1 - 1) /
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Consider the homomorphism u : C2(K3) -4 C2(K,.) with matrix:

R(s)1 ... R(s),, R(s)12 ... R(s)("-1)"
R(r)1 1 ... 0 0 ... 0

R(r),, 0 ... 1 0 ... 0
r-1 r-1 s'-1

R(r)12 k.(Eai).(a2-1) ... 0 (Ea')(E a"') ... 0
i=0 i=0 i=0

0 ... 0 0 ... 1

Note that the determinant of the augmented matrix is s' r. We leave it to
the reader to check that the diagram

C2 (Ks) - C1(k..)

µ l II

-21+ C1(Kr)

commutes. Now use Lemma 1.2 with f any map which is the identity on the
1-skeleton and -y = 12 - p. 0

For the group G = 7G,,,, x ... x 7L,,,,, with torsion coefficients m1) m2 ... (mn,
Sieradski [Si77] showed that D = ± ( Z 1 ) ' ' . So the bias can be explicitly
computed for twisted presentations. So the number of distinct homotopy
types of twisted models is at least the order of /U*1/ ± (Z*,11)"-1. In §2, we
will see that this is the number of homotopy types of (G, 2)-complexes of
minimal Euler characteristic. Simple number theoretic arguments allow us to
compute this order directly, in terms of the Euler function 0 ([Si77], p. 137).

For two twisted presentations where the bias does vanish, Sieradski was able
to construct 3-deformations between them. Thus, we have this theorem:

Theorem 1.17 Metzler [Me76]; (G) Sieradski [Si77]) The standard
two complexes Kr and Ks of two twisted presentations of a finite abelian group
are homotopy equivalent, simple-homotopy equivalent and 3-deformation equiv-
alent if and only if the bias of the pair vanishes:

7Gb(KK, Ks) = 1 E ;"1/ ± (Z
)"-1

The above classification will be useful to us in Section 2, when we classify all
(G, 2)-complexes, where G is a finite abelian group.



2. Classifications for Finite Abelian ir1 111

2 Classifications for Finite Abelian 7rr1

The next step in the homotopy classification of (G, 2)-complexes for G a finite
abelian group is to construct the Browning obstruction theory, due to Wesley
Browning ([Br78],[Br791], [Br792], [Br793]). In some sense, this obstruction
theory is merely an extension of the idea of bias, but the algebra used is
much more sophisticated. Consequently, we will merely define the Browning
obstruction group and the obstruction elements. We will not include the
lengthy and complicated proofs.

In §2.1, we will define the Browning obstruction elements and the Browning
obstruction group. In §2.2, we will prove that, for finite abelian fundamental
groups, the Browning obstruction is equivalent to the bias obstruction.

2.1 The Browning obstruction group

Wesley Browning [Br78] defined an obstruction to two finite (G, d)-complexes
with the same Euler characteristic being homotopy equivalent, provided the
fundamental group satisfied Eichler's condition. For alternate treatments, see
[GuLa9l] and [Gr91]. We will not define Eichler's condition here. Suffice it to
say that groups that do not have binary polyhedral quotients satisfy Eichler's
condition. Consequently, finite abelian groups satisfy Eichler's condition, and
Browning's theorem holds for such groups.

Let G be a finite group satisfying Eichler's condition. Let K and L be (G, d)-
complexes with X(K) = X(L). We will assume the Euler characteristic is
minimal with respect to G, since otherwise the Browning obstruction group
vanishes [Br78]. Browning actually proved that, above the minimum Euler
characteristic, all (G, d)-complexes with the same Euler characteristic are
homotopy equivalent, for any finite group G.

If we assume f : K -> L is the identity on the (d - 1)-skeleton, then f is a
homotopy equivalence if and only if the homomorphism fd : Cd(K) - Cd(L)
is an isomorphism, as we have said before.

Definition 2.1 Let u be the set of primes that divide the order of the finite
group G. Let Z,, = { b I a, b E Z and (b, p) = 1, for every p E u}. The
localization at u of a module or a homomorphism between modules results by
tensoring with Zu. (E.g., the localization Mu of a module M means M (9 Zu).

Lemma 2.2 Given a map f : K -4 L which is the identity on the (d - I)-
skeleton, then there exists a map g such that g(') = f (i), for i < d and the
matrix representing gd : Cd(K) -+ Cd(L) localizes to an invertible matrix.
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As the proof makes free use of homological algebra and the theory of pointed
modules, we refer the reader to Browning's thesis [Br78, (2.10.3], [GuLa9l,
Lemma 3.11], or [Gr91].

Let R be any ring with unit. Let Gln(R) be the group of invertible n x n-
matrices with entries in the ring R. We can consider the group GL,,(R) as a
subgroup of GLn+1(R) by adding a just 1 as a new diagonal entry:

1 .

Let represent the direct limit lim GL,,(R). That is, GL,o(R) is the
group of infinite invertible matrices which are the identity matrix accept in a
finite number of entries. Define

K1(R) _- GL,,. (R)/[GL,,. (R), GL,. (R)],

the abelian quotient of Whitehead showed that the commutator
subgroup [GL,,, (R), is actually the subgroup generated by the ele-
mentary matrices (See [Co73]). So, in fact, K1(R) is the group of matrices
modulo row and column operations.

Given a matrix M E GLn(R), let r(M) represent the class of M in K1(R).
Given a chain equivalence between two free chain complexes over a ring R,
the torsion of the chain equivalence can be computed as the equivalence class
in K1(R) of the invertible matrix representing the chain map (see [Co73]). If
the chain equivalence is the identity below the top level, d, then its torsion
will be plus or minus the torsion of the matrix on the d-level. By adjusting
the lower dimensional skeleta, Lemma 2.2 gives for any finite group G:

Lemma 2.3 Given two (G, d)-complexes K and L with X(K) = X(L) and a
group isomorphism a : 7r1(K) -* ir1(L), then there exists a map f : K -3 L,
with f. = a, such that the chain map ff: C.(K) -+ C.(L) localizes to a chain
equivalence: f. ® Zu : C.(K) ® Z. -+ C.(L) 0 Z, .

The local torsion of f, r(f) will be defined using the torsion of the matrix
representing the chain equivalence (f.)u, with respect to the standard bases,
as in [Co73, (14.2)]. If F is the identity on the (d - 1)-skeleton, this matrix
is equivalent up to sign to the torsion of the matrix for the homomorphism
Cd(K)u -+ Cd(L)u. The following lemma helps us compute this torsion.

Lemma 2.4 For a finite group G and a finite set u of primes dividing the
order of G, the homomorphism from the units of ZuG to K1(ZuG), t :

(/LuG)* -+ K1(ZuG), is onto. If G is commutative and M is in GLn(ZuG)
then T(M) = t(Det[M]).
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Proof: By [Sw70], Lemma 9.2, ZuG is a semi-local ring. By [Si181], Chapter
6, Kl of a semi-local ring is represented by units. The second part of this
lemma follows from direct calculation.

Note that if fd were an isomorphism, then the induced matrix Mf would be
invertible over ZG, i.e., Mf would represent an element of Kl (ZG). Con-
sequently, such invertible matrices should represent zero in any obstruction
group. So we will quotient out by the image of Kl (ZG) in Kl (7L G). It
should be clear that if Mf is not zero in K1(Z,,G)/t (Kl(ZG), where i*
is induce by inclusion, then f cannot be a homotopy equivalence. Define
Kl(7G,u) = K, (ZuG)/t (K,(7G).

In determining whether there exists a homotopy equivalence inducing a, we
must also consider the effect of modifying f by composing it with a map
h : L -4 L which is the identity on the fundamental group of L. Even though a
given map may not be a homotopy equivalence, some other map, inducing the
same isomomorphism on fundamental groups may be a homotopy equivalence.
The homotopy inverse composed with the original map would be a map which
induces the identity on the fundamental group. We must therefore quotient
out by the effects on the obstruction via maps on L that induce the identity
on the fundamental group. This will be dealt with in the following definition:

Definition 2.5 Let Autu(L) refer to the maps h : L -4 L which induces the
identity on the irl(L) and induces a chain equivalence on the chain complex
C*(L)u. Define the Browning Obstruction Group to be

BrL(G) - Ki(7GG,u)/T(Autu(L))

where r(Autu(L)) represents the subgroup of all elements of the form r(h) in
Kl (Z G, u), h E Autu(L) .

Define the Browning obstruction element of K and L with respect to a as

BC (K, L) - T(f*) E BrLG

where f : K -4 L is a map which induces a given isomorphism a on the fun-
damental groups and localizes to a chain equivalence f* : C*(K)u -+ C*(L)u.

We note that BU (K, L) is independent of the choice of f . Also, though the
obstruction element depends on a, the group it lies in will not depend on a
(See [GuLa9l]). The following theorems are stated without proof.

Theorem 2.6 (Browning's Theorem [Br793], [GuLa9l]) Let G be a finite
group satisfying Eichler's condition. Given two (G, d) -complexes K and L
with X(K) = X(L), there exists a homotopy equivalence g : K -* L which
induces a : ir(K) '" 7r1(L) if and only if B,,, (K, L) = 0.
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The transitivity of the Browning obstruction follows from the definition:

Theorem 2.7 (Transitivity) For (G, d) -complexes K, L and T and isomor-
phisms a : irl (K) -+ 7r1(L) and /3 : 7r1(L) -* 7rl (T), then

Bpo«(K,T) = i3*(B.(K,L)) - B,3 (L, T),

where /3.: BrL(G) -+ BrL(G) is the obvious homomorphism induced by /3.

2.2 Homotopy classification for finite abelian ir1

Let G be a finite abelian group 7Lm, X ... X !Limn, with torsion coefficients
m;-1

ml I m2l ... I m,,. Let N1, N2,..., Nn be the respective sums Ni = al ,
j=1

where ai generates 7Lm;. Let N = E g, the norm element of ZG. The
9EG

following exercise may be easily established by induction:

Exercise 2.8 Let u be the set of prime divisors of G. Prove that any element
p E Z, ,G with augmentation e(p) = 1 may be written as a product of elements

with

Proposition 2.9 (Browning [Br793]) Let K be the standard complex of the
presentation

P= (a1,a2,...,an I ai',a22,...,afm-, [ai,a.j] (i <j) ).

Then the sets {1 + rN I r E Z I and l p E I e(p) = 11 are contained
in C K1(ZG, u).

Proof: To realize the elements that augment to 1, we merely note that Ex-
ercise 2.8 tells us that the matrix:

/pl 0 ... 0 0 0

0 02 .. 0 0 ... 0

O 0 ... pn 0 ... 0

0 0 ... 0 1 ... 0

\ 0 0 ... 0 0 ... 1/
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will commute with the boundary homomorphism C2(K)--*C1(K),

R1

a1 a2 ... an-1 an

MI-1( E al 0 ... 0 0
I 1=0

M2-1
R2 0 at ... 0 0

i=0

Rn-1
M.-J-1

0 0 ... an-1 0
i=0

M.-1
Rn 0 0 ... 0 a',

i=0

R12 (1 - a2) (a1 - 1) ... 0 0

R(n-1)n \ 0 0 ... (1 - an) (an-1 - 1)f

Consequently, by modifications of the identity map id : K -+ K by 7r2 ele-
ments, we can construct a geometric map, f : K -* K, which induces the
identity on the 1-skeleton and whose torsion is the torsion of the above matrix,
which is u.

Similarly, to realize 1 + rN, we merely need to point out that N a(Sij) = 0
where S1J is the algebraic boundary in C1 (K) of the 2-cell corresponding to
the commutator relator [ai, aj]. Therefore, if we start with the identity matrix
on C2(K), and replace the 1 corresponding to the Si,; entry with 1 + kN, we
see that the new matrix again commutes with the boundary homomorphism.

Corollary 2.10 The elements of K1(7LG,u)/T(Autu(K)) are representable
by integers in (7L/IGI7L)*/f1, where IGI is the order of the group.

Proof: Since ZuG is semi-local, K1(7L G) is representable by units, [Si181],
Section 6.5. So let [tc] E K1(7LG,u)/T(Autu(K)), where Ic E (ZuG)*. Let
k = E(K) E 7Lu. Since 1c 1 augments to 1, it is in T(Autu(K)). Consequently,
K is equivalent to k E (7Lu)*.

By this argument, 1 + rN is equivalent to 1 + rjGj E K1(7LG, u) /,r(Autu(K)).
So any integer congruent to 1 mod IGJ, is equivalent to 1. In particu-
lar, if b E Z is the multiplicative inverse of b in 7L/IGIZ, then b =

n
E

K1(7LG,u)/,r(Autu(K)). Therefore, if r = n E 7Lu, then r is equivalent in
K1(7LG, u)/,r(Autu(K)) to ab.
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Theorem 2.11 Let K be a finite 2-complex with minimal Euler character-
istic and with 7rl (K) = G, where G is a finite abelian group with torsion
coefficients m1Im21 ... jmn. Then K is homotopy equivalent to the standard
complex Kr the model of some twisted presentation P, (see, §1.3) of G.

Proof: First, let Kl is the standard 2 complex of the usual presentation of G
and K, is the standard complex of the above presentation. We will construct
a map f : Kl -3 K, which is the identity on the 1-skeleton and whose torsion

r-1 r-1
is [ E all E K1(Z,,G). Note that E ai 0Si,2 = aR1,2, where R1,2 is the 2-cell

i=O i=O
in k, corresponding to the relator ala2ai ra21, and S1,2 is the 2-cell in K1

r-1
corresponding to the relator [al, a2]. Note also that E a' is a unit in 7LnG.

i=O
For, if rs = 1 + qml for some s and q, then

r-1 s-1
q
m1-1

ai = 1.
i=O i=O r i=O

r-1
Also notice that E ai augments to r E Z. Ba(K1,Kr) = [r], where a

i=O
7rl(K1) + 7r1(K,) is the homomorphism induced from the identification of
the generators. Consequently all of the elements of
are realizable by obstructions to complex K being homotopy equivalent to a
standard complex of a twisted presentation.

Now, suppose K is some (G, 2)-complex with minimal Euler characteristic.
Let a : ir1(Kl) -> 7r1(K) be an isomorphism. By Corollary 2.10, Ba(K1, K) =
[s] for some integer s relatively prime to JGI. Now, let r be an integer which is
the multiplicative inverse of s mod m1. Notice B,3 (K,, K1) = [s]-1, where /3 is
induced by the identity on the generators of G. Using the transitivity of the
Browning invariant, we see that Baop(Kr, K) = /3.(BQ(K K1)) B.(Ki, K).
Since /3 is the identity on generators, it acts as the identity on the obstruction
group. Thus Baop(Kr, K) = [r] [s] = 1. So K is homotopy equivalent to K
by Browning's Theorem.

Therefore, each 2-complex with minimal Euler characteristic and fundamental
group G is homotopy equivalent to one of the standard 2-complex of a twisted
presentation. Furthermore, the number of their homotopy types is that of the
twisted models, the order of the quotient group 7Lm1/ ± (Z;,,1)n-1.

The results of the above theorem can be extended to a simple-homotopy
classification. Using the results of [La86], all minimal (G, 2)-complexes (with
G finite, abelian) are simple-homotopy equivalent to a standard complex of
a twisted presentation. Of course we know, from Sieradski (see Theorem
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1.17), that if the Browning obstruction vanishes for standard complexes of
twisted presentations, then they 3-deform to one another. We still don't know
whether two arbitrary (G, 2)-complexes that are homotopy equivalent (hence
simple-homotopy equivalent) must 3-deform to one another. This is a case of
the Generalized Andrews-Curtis Conjecture discussed in Chapter I.

The techniques used in this section can also be used on non-abelian groups
that are semi-direct products of cyclic groups (see [La91], and [Gu-La93]).

3 Classifications for Non-Finite 711

This section gives techniques and facts currently known for 2-complexes with
non-finite fundamental groups. In §3.1, we generalize the Browning obstruc-
tion elements and give examples. In §3.2 and §3.3, we give techniques and
examples for free products of groups.

3.1 Infinite groups; generalized Browning invariant

We generalize the results from homotopy equivalence to partial homotopy
equivalence, i.e. equivariant homology equivalence of finite covers.

In this section, we will work with finite quotients Q of our fundamental group
G and the localizations at the set u of primes dividing the order of Q. If L is
a 2-complex with fundamental group G and 0 : G -* Q is a surjection onto
a finite group, we construct a group BrL(Q). Given a 2-complex K and an
identification

iri (K) iri (L)
.1.B J.B'

Q = Q.

We define a total obstruction to homology equivalence of finite covers in
BrL (Q) which is defined for all 2-complexes L with fundamental group G and
Euler characteristic x(L). We are able to locate the obstruction as a torsion
element in a quotient of Kl (ZQ, u), which is defined to be the quotient of
K1(ZuQ) by t.(Ki(ZQ))

There are two technicalities. The first condition is that H2(ker 0) must be
a module which, as a group, is free abelian. This does not appear to be a
serious setback. For example, if G is a finite free product of finite abelian
groups, its commutator subgroup has free abelian second homology. The
second condition is that Q satisfy Eichler's condition. Again, this is not a
serious constraint, since "most" finite groups satisfy Eichler's condition.
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Let G be a fixed group. As before, we consider 2-dimensional CW-complexes
K with only one vertex K(°) (the zero skeleton). In general, we look at pairs
(K, ¢), where ¢ is an isomorphism, 0 : iri (K, K°) -* G. Given any two such
complexes K, L, there is a map f : K -* L such that f. is an isomorphism of
fundamental groups making the diagram

7ri (K, K°) iri (L, L°)

OK K OL

G

commute. Thus, we can identify the fundamental groups of K and L via f..

Let 0 : G -4 Q be a surjection of groups with kernel N. Let k be the covering
of K associated to N (strictly speaking to 0-1(N)). Given K and L and f as
above, there is a unique lift f : K -4 L of f sending the preferred base point
of IC to that of L.

Definition 3.1 The map f : K -* L above is said to be a partial homo-
topy equivalence with respect to Q if f induces an isomorphism of integral
homology.

Remarks: (1) Among the pairs (K, 0) as above, this is an equivalence
relation: If L is partially homotopy equivalent (with respect to Q) to M via
a map g : L -+ M, then the lift of g o f is g o 1, and it clearly induces an
isomorphism H.(K) -4 H.(1Vl).

(2) Clearly, the isomorphism of homology in the definition is Q-equivariant.

(3) A partial homotopy equivalence with respect to G is just a homotopy
equivalence, since in that case k is the universal cover K. At the other
extreme, a partial homotopy equivalence with respect to the trivial group is
a homology equivalence (with an isomorphism of iri). Thus partial homotopy
equivalence is necessary for homotopy equivalence and sufficient for homology
equivalence.

Consider u, k and Q as usual with 0 : ir1K -4 Q onto, Q finite of order
n, u the set of primes of n, H2(ker(9)) free abelian, and k the cover of K
associated to ker(9).

Definition 3.2 Let Autu(L) be the set of maps g : L --* L that induce the
identity on 7ri(L) and a localized chain equivalence (g.)u : C.(L)u = C.(L)u,
where L is the cover of L associated to Q.
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Definition 3.3 Let 9 : 7r1 (L) -3 Q be a homomorphism onto a finite group.
let a : 7r1(K) - 7r1(L) be an isomorphism and let f : K -> L be a map with
f. = a. Let f : K -4 L, the lift of f corresponding to ker(9), induce a local
chain equivalence (.)u : C.(K) -4 C.(L), then define

B,,,,Q (K, L) __ T(f) mod Autu (L) E Kl (ZQ, u)/Autu(L).

Theorem 3.4 (Browning's Theorem for partial homotopy [GuLa9l]) Given
two finite 2-complexes K and L with a : 7r1(K) = 7r1(L) . Let 6 : 7r1(K) -4 Q
a homomorphism onto a finite group with H2(ker9) free abelian. There exists
a partial homotopy equivalence f : K -* L with respect to Q with f. = a if
and only if B,,,Q(K,L) = 0 in K,(ZQ,u)/Autu(L).

We now consider the case when G = H * J, where H and J are finite groups.

Definition 3.5 For any finitely presentable group G, let Xnmin(G) be the min-
imum Euler characteristic for a 2-complex with fundamental group G.

Proposition 3.6 If 9 : H * J -4 Q is a surjective homomorphism onto a
finite group with the restrictions to H and J injective, then ker 9 is a free
group. In particular, H2(ker(O)) is trivial, hence, free.

Proof: Let N = ker 9. Let K and L be finite 2-complexes with 7r1(K) =
H,7r1(L) = J, X(K) = Xmin(H) and X(L) = X,nin(J). K V L will have funda-
mental group H * J. Let K V L be the finite lift of K V L whose fundamental
group is N, with covering map p : K V L -4 K V L. Since H and J inject into
Q, then the covers of K and L in K V L will be unions of universal covers,
p-1(K) = Ui K, p -'(L) = UjL, where U is disjoint union and k and L are
universal covers. Now replace the `wedge', V, in K V L by an arc connecting
a point of K with a point of L, then K V L=p-1(K)Up-1(arc)Up-'(L). So
off of the covers of K and L, K V L is 1-dimensional. Since the components
of p-1(K) and p 1(L) are simply-connected, K V L is the fundamental group
of a graph. Therefore N = 7r1(K V L) is free. 0

Corollary 3.7 If H = 7G,,,, X Zn J = 7L,n2 x Dint, and Q = H x J satisfy the
conditions of (3.6), then there is a unique partial homotopy type for (H * J, 2)-
complexes K having a specific Euler characteristic X(K) > Xmin(H * J).

Proof: Let L be the 2-complex with minimal Euler characteristic and with
7r1(L) = H * J. Since X(L) < X(K), then X(K) = X(L V nS2) for n > 0. We
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will compute the Browning obstruction to partial equivalence using L V nS2.
We may always construct a map h : L V nS2 -+ L V nS2 which is the identity
on the 1-skeleton and multiplication by p on one of the S2's for any p E ZG.
In particular if p = r is any integer relatively prime to the order of Q,
[r] E Autu(L V nS2). Given any unit in ILuQ, multiply it by an r to get it
into ZQ, then lift it to 7LG. It will then be realizable. Therefore, all torsion
elements of Kl (Z Q, u) are actually in r(Autu(L V nS2)). 0

The above corollary is of particular interest, since there are examples where
Xmin(H * J) < Xmin(H) + Xmin(J), [HoLuMe85]. This is the case if we let
m1, m2, r1, r2, n1, and n2 be integers with ri > 1, r;"' - 1 = ni qj, (ql, q2) =
1, ri = 1 mod ni, and (mi, ni) 1. For example, let m1 = n1 = 2, m2 =
n2 = 3, r = 9. The examples of [HoLuMe85] have been shown to have the
same homology type (Metzler, private communication). Partial homotopy
type may be able to distinguish homotopy types.

Remark 3.8 Let G be any finite group satisfying Eichler's condition. Let
p : G -> Gl(n,7L) be a representation. The representations are in one-to-one
correspondence with the semi-direct products G K 7Ln. If 0 : G K Zn -* G,
then ker(0) will have free second homology. Therefore, we may use the theory
of partial homotopy equivalences to try to distinguish the homotopy types of
2-complexes with fundamental group G x Z.

3.2 Results when ir1 is a free product of cyclic groups

Among infinite groups, homotopy classification has, as far as we know, only
been achieved for free groups:

Theorem 3.9 Every compact, connected 2-complex with free fundamental
group is homotopy equivalent to a finite bouquet of 1- and 2-dimensional
spheres (see [Wa65], Proposition 3.3). .

It is not within the bounds of possibility of this section to give all the argu-
ments for Theorem 3.9, but we are going to give a guide to the framework for
a proof.

It clearly suffices to establish the assertion for polyhedra which arise by vary-
ing given 2-complexes within their 3-deformation types. Hence by Chapter I,
without loss of generality, we may deal with standard complexes K of finite
presentations of a free group.

There is a bouquet L of 1-spheres and 2-spheres having the Euler character-
istic of K and a map f : K -+ L inducing an isomorphism of fundamental
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groups. Moreover, suitable 3-deformations augment L by a sum of 2-discs
and modify K to yield (Exercise):

The 1-skeleta of K and L coincide.

There are maps f : K --3 L and g : L - K whose restriction to the
1-skeleta is the identity map.

That gives us the commutative diagram for the chain complexes of the uni-
versal coverings:

0 -* H2(K) -+ C2 (k) -- C1(K) -* CO(K) -> Z -* 0

(1) II .1.T f2 T g2 II

0 -+ H2(L) -+ C2(L) -- C1(L) - CO(L) -+ z --+ 0

Now L2 is the standard complex of the presentation

P = (a1,...,a,, I a,,...ak, 1,..., 1),

with m relations. Its second boundary operator is just the projection onto
(ZG)k, the direct summand of C1(L) generated by those 1-chains that are
associated to the trivial generators of P. The second chain group splits into
the sum C2(L) = (ZG)k®(ZG)m-k where the second summand equals H2(L).

By commutativity of diagram (1), the second boundary operator in the upper
row is also the projection onto (7GG)k, and the sequence splits. Hence

(2) H2(K) is a finitely generated stably free module.

Were H2(K) actually free, it would have rank m - k. Then the sum of the
isomorphism of the (ZG)k summands of the second chain groups with any
isomorphism H2(K) = (ZG) m-k would define a chain map C2(K) -+ C2(L),
yielding the situation of diagram (1) with 12 an isomorphism. This would
suffice to show that K and L are homotopy equivalent.

So far, we have reduced the proof of Theorem 3.9 to the question whether

(3) stably free modules over the group ring 7GG of the free group are free.
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Although in Section 2, localization of the group ring was the right tool, in prov-
ing (3) tensoring with field coefficients turns out to be helpful: The analogous
statement to (3) for the group ring QG of the free group G with coefficients in
a field Q can be established (see, [Ho-An901] for a topological proof and the
bibliography there), and then lifted to Z-coefficients [Ba64]. So the sketch of
the proof of Theorem 3.9 is complete.

For general free products G of cyclic groups, there are the standard pre-
sentations P = (a,, ... , an I ai ', . . . , ak k,1, ... ,1) with associated standard
complex L2. Let K2 be any compact connected 2 - complex with 7r1(K) = G.
Based on work of G. Bergman [Be74] about free products of rings, Hog-
Angeloni [Ho-An902] proved that tensoring with field coefficients still yields
the situation of diagram (1) with 12 an isomorphism. Furthermore, f2 can be
chosen to have trivial Whitehead torsion. Whether the result can be lifted,
as in the case of a free group, to 7L-coefficients or whether there is an integer
obstruction, remains a topic for further research. For some partial results,
see [Lat86].

3.3 Trees of homotopy types, simple-homotopy types,
and 3-deformation types

The concluding subsection of this chapter will illuminate what has been built
up further on the chain of implications (41) of Chapter I: For finite, connected,
CW-complexes K2 and L2,

KZ3L2 K2L2 K2LZ

ir1(K2) ;: 7r1(L2) and X(K2) = X(L2).

So far we have dealt only with a systematic study of the obstructions to
reversing the last implication.

For a fixed group G, consider the (directed) tree of homotopy types (see
[DySi73]) whose vertices consist of homotopy types of 2-complexes where the
type of a 2-complex K is joined by an edge to the type of its sum (one-point
union) K V S2, with the 2-sphere S2. The trees of simple-homotopy and 3-
deformation types are defined analogously. Of special interest in each of these
trees are the roots and the junctions. The roots are the types that do not
admit a factorization involving an S2 summand. They generate the rest of the
types above them in the tree by the operation of forming sums with S2. The
junctions are the types that admit two or more inequivalent factorizations
involving an S2 summand. Each junction is a 2-dimensional instance of non-
cancellation of the 2-sphere S2 with respect to the sum operation.
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For example, by Theorem 3.9, the tree of homotopy types for a free group is
a bamboo stalk with no junctions and with a single root determined by the
type of the sum VS1 of copies of the 1-sphere S1, see Fig la. Moreover, since
the Whitehead group of a free group is trivial, the trees of homotopy type
and simple-homotopy type coincide.

I X min X min
(a) (b)

Figure III.1. Homotopy trees

By Section 2, the tree for the finite abelian group G Z,n, x ... x Z,,,,, has
the form of Figure 1 with IZml/ ± (Z;,,1)`J roots represented by the twisted
presentations. Again, the tree of homotopy types coincides with the tree of
simple-homotopy types, see [La86].

Actually, Figure lb shows the shape of the tree of homotopy types for all finite
groups: From the Jordan-Zassenhaus-theorem [Sw70], it follows that there
are only finitely many types at each level, and Browning's Theorem [Br793]
proves that there is a unique homotopy type at each level above Xmin As for
the tree of simple-homotopy types, it is an open problem whether the number
of types at the minimum Euler characteristic is finite, but Kreck-Hambleton
[HaKr921] show that there is only one simple-homotopy type above Xmin; see
Chapter IX, §1.

For infinite groups, rather different phenomena arise:

Dunwoody [Du76] exhibited an example of a root above X,,,in - level.

Lustig [Lu93] (also compare [LuPr92]) discovered infinitely many dis-
tinct homotopy types at the same level of X.

Metzler [Me90] and Lustig [Lu91] give examples of homotopy equivalent,
but simple-homotopy inequivalent 2-complexes; compare Chapter VII,
§5.6, and Chapter XII, §3.2.
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For a study, to which extent the tree of (3-deformation, simple- homotopy,
respectively) homotopy types of the free product is determined by the cor-
responding trees of the factors, see Section 3 of Chapter XII. For a survey on
trees of homotopy types of general (7r, m) - complexes see [Dy79].

What about the trees of 3-deformation types? The converse of the first im-
plication in (41) of Chapter I behaves differently from the others. While
for .7rl = 111, it is not hard to classify homotopy type and simple-homotopy
type, there are examples of contractible 2-complexes that are conjectured to
represent exotic 3-deformation types (see Chapter XII, §1.1 ). On the other
hand, the generalized Andrews-Curtis Conjecture (see Chapter I, (30)) states
that simple-homotopy type and 3-deformation type coincide. Chapter XII is
dedicated to a discussion of the status of research on this problem.

3.4 Problems for Chapter III

1. Complete the (simple-) homotopy classification for 7r1 = free product of
cyclic groups.

2. (Problem a) of [Ho-AnLaMe90]) For other classes of finite groups (see
above for the abelian class), give a complete set of representatives for
the vertices at the minimum Euler characterisitic of the tree of (simple-)
homotopy types

3. (Problem b) of [Ho-AnLaMe9O]) The examples of [Me90] and [Lu91] had
infinite fundamental group. Does there exist a pair of homotopy equiv-
alent 2-complexes with finite fundamental group that are not simple-
homotopy equivalent?

4. (Problem c) of [Ho-AnLaMe9O]) Is it possible to get infinitely many
compact connected 2-complexes which are pairwise simple-homotopy
distinct, but which all have the same homotopy type?

5. (compare Problem b) of [Dy79]) Add to the list of groups with a single
minimal root in the (3-deformation-, simple)-homotopy tree.

6. (compare Problem c) of [Dy79]) Do there exist 2-complexes K2, L2 such
that KV2S2^_-LV2S2butKVS2 LVS2?



Chapter IV

Crossed Modules and 112
Homotopy Modules

Micheal N. Dyer

1 Introduction

This chapter is partly an introduction to crossed modules, with emphasis on
the role that they play in the study of 2-complexes, and an introduction to
various identity properties.

Recall from Chapter II that, if X C Y are topological spaces, then the bound-
ary map a : ir2 (Y, X) -+ 7r1(X) is well known to be a it1(X)-crossed module.
We will call this the crossed module associated with the pair (X, Y).

In Section 2, we will study projective and free crossed modules, in particular
J. Ratcliffe's characterization of these modules. We also show that, if (Y, X)
is a pair of 2-complexes, then the crossed module associated to it is projec-
tive. This is definitely not true if the pair is not 2-dimensional. Further,
we characterize when the kernel of a projective crossed module is trivial in
homological terms.

In Section 3, we study the coproduct of crossed modules. The purpose here
is to demonstrate how the second homotopy module of a 2-complex can be
built up from subcomplexes.

In Chapter II, it was shown that a 2-complex is aspherical if it satisfies the
identity property. Let X be a 2-complex with fundamental group G. If N is
a subgroup of G, let XN denote the covering of X corresponding to N. In

125
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3.3, we study a generalized N-identity property and show how it is equivalent
to the vanishing of the Hurewicz map h : ir2(X) -* H2(XN), the so-called
N-Cockcroft property.

2 Crossed and Precrossed Modules

A G-crossed module consists of a triple (C, 8, G) , where C and G are groups
with G acting on C (on the left, with action denoted by g c for g E G and
C E C) and 8: C -* G a homomorphism of groups satisfying

(CM1) a(gc) = g(8c)g-1 for all g E G, c E C, and

(CM2) cdc 1 = (ac) d for all c, d E C.

Thus, if G acts on itself by conjugation action, then (CM1) says that a is a
G-homomorphism.

It follows easily from the definition that K = ker a is contained in the center
of G and that N = im a is a normal subgroup of G. Let Q = GIN. Then,
because N acts on C via conjugation action by a pre-image under 8 (by
(CM2)) and because the conjugation action induces the trivial homomorphism
on the homology groups H;C, we see that these homology groups are ZQ-
modules. Thus, Cab, the abelianization of C, is a 7LQ-module . So we have
the central extension

O-K-*C3N--1.

Obvious and important special cases are: (1) the case where C is a 7GG-
module (so a = 0) and (2) the case where C is a normal subgroup of G (so a
is the inclusion).

As in Example 1 in §3.2, Chapter II, let m be a positive integer, P denote
the presentation (x I xm) of the cyclic group C,,,, and X be its corresponding
2-complex. Let S denote the element of ZC,a given by the sum S = 1 + x +

+XM-1 and ICm = 7LQ(x-1) be the so-called augmentation ideal in ZQ,
which in this case is generated by the single element (x 1). Then the cellular
chain complex of the universal cover k looks like CZX = ZC,,, for i = 0, 1, 2
with a2 : C2X -- C1X given by multiplication by S and a1 multiplication
by (x - 1). In this case 7r2(X) IC,,,. Furthermore, if XM denotes the
one-skeleton of X, then 7r2(X,X(1)) zt 7GC,,,. This is a rare occurrence of an
abelian relative homotopy group 7r2(Y, Z).
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A morphism (a, /3) from the crossed module (C, 0, G) to (C', a', G') is a pair
of group homomorphisms a : C -+ C' and f3 : G -+ G' so that the following
diagram commutes :

C -* C'
a.1. 18,

G G'

for which a(g c) = /(g) a(c) (g E G, c E C). Let CM denote the category
of crossed modules. .

If, in the above diagram, 3 is the identity on G = G', we say that a is a
G-crossed module homomorphism or G-morphism and denote this category
by CMG-

A pre-crossed module is a triple (C, a, G) as above satisfying just (CM1).
There are similar categories PCM (respectively, PCMg) of pre-crossed mod-
ules (respectively, pre-crossed modules over G).

Let (E, a, G) be a pre-crossed module. Then we can define the identity sub-
group of E to be I = ker a. Furthermore, we let P (the so-called subgroup of
Peiffer identities) be the normal closure (in E) of the set

W= {xyx-1a(x) y I x, y E E}.

The elements of W are called Peiffer elements . Of course, Peiffer elements
are identities and the triple (E/P, a, G) is a crossed module.

2.1 Free crossed modules

A G-crossed module a : C -4 G is called a free crossed module with indexed
basis {ca : a E Al C C if it satisfies the following universal property: given a
G'-crossed module 8' : C' -* G', an indexed subset {c,' : a E A} C C' and
homomorphism T : G --> G' such that r(a(c,,)) = 8'(c,') for each a E A,
then there is a unique homomorphism r) : C -4 C' such that rl(ca) = ca' for
each a E A and the pair (rl, T) is a morphism of crossed modules.

Examples of free crossed modules are ordinary free modules over a group, free
groups, knot groups, and higher dimensional link groups (all with the obvious
bases). Indeed, because a knot group G has an element c E G such that the
normal closure <<c»G of c in G is all of G , the group G is a free G-crossed
module with basis {c}.
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J. H. C. Whitehead proved in [Wh492] (see Chapter II, Theorem 2.9) that if
X is obtained from A by attaching only 2-cells, then the crossed module asso-
ciated with the pair (X, A) is free with basis corresponding to the homotopy
classes of the attached 2-cells. He also showed that any free crossed module
can be constructed this way.

For the reader's convenience, we repeat the standard construction of the
(unique, up to isomorphism) free crossed module associated to the data: let
G be a group and {ga}aea be an indexed set of elements in G . Let E be the
free group on G x A. The group G acts on E via g (x, a) _ (9x, a). We let
the map a : E -1 N = <<{ga}»G be defined by 6(x, a) = xgax-1. Notice
that the triple (E, 8, G) is a pre-crossed module, called the free pre-crossed
module determined by G and the set {g,,,}. Let P be the subgroup of Peiffer
identities in E; that is to say, P is the normal closure in E of the set W of
basic Peiffer elements:

W = {(x, a)(y, )3)(x, a)-1(xgax-'y, ,Q)-1Jx, y E G and a,0 E A}.

Let the group C = E/ P and the homomorphism 0 : C -4 G be defined by
the map 6. Let p : E -4 C be the natural projection and, for each a E A
let ca = p(1, a). Then (C, 0, G) is a free crossed module with basis {ca}.

The subgroup I = ker a are identities among the boundaries {g,,}. A typical
element

of E is an identity if and only if
n

xtg,x;1=1
i=1

in G. Recall that P C I. A slight generalization of Theorem 2.6 in Chapter
II shows that K = ker 0 = I/ P.

The following lemma is the key to studying free crossed modules.

Lemma 2.1 (Ratcliffe [Ra80]) P n [E, E] = [E, I].

Proof:: Suppose that e E E and z E I. Then p(z) E ker 8 which is in the
center of C. Hence, p[e, z] = [p(e), p(z)] = 0, so [e, z] E ker p. This shows that
[E, I] c P n [E, E].

To see the reverse inclusion, suppose that q E P n [E, E]. We write
n

q = H tiw,'t= 1,
i=1
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where wi E W, ti E E, ei = ±1.

Write

Modulo [E, P] C [E, I], q - q' where q' = rj;`_1 w;'. Since q E [E, E], the
totality of the factors (yi, /3i)E' and (xigixi 1yi, 3)-' must fall into inverse
pairs. First, suppose that for no proper subset of {w1, ... , wn} do the (yi 3i)E'
and (xigixi fall into inverse pairs.

Given u = (x, a)E with e = ±1 and v = (y,)3), let v* = and
[u; v] = uvu-1(v*)-1 . The element [u; v] is called a crossed commutator.
Observe that [u; v]-1 = v*uv 1u-1, so

wi = (xi,ai)(yi,,3i)(xi,ai)(xigixi 1yi,/3i)-1 9i =gai.

u-1[u; v]-1u = u-1v*uv-1 = [u-1; v*];

hence, [u; v]-1 - [u-1; v*] modulo [E, P]. Therefore, q' - q" mod [E, P],
where q" = jIn [ui; vi] with

ui = (xi, 00" vi = (ziyi, A), vi = (xig7'xi Iziyi, Ni),

and

zi =
1 ifei=1

j xigixi 1 if ei = -1

Modulo [E, E], q" = 11 1 vi HIj=1(v!)-1. But q" E [E, E] implies that for
each i, vi = v,* for some j. Modulo [E, P], we may rearrange the terms of q".
This allows us to reindex so that vi = vi+i (i modulo n). Therefore, all the
/3i are the same, say Qi = 3, and ziyi = xi+19i+'x=+1zi+1yi+1 (i modulo n).
Hence,

yn = zn (fixigxi1)1
znyn

s.1

and
n
7- xi9iE;xi 1 = 1.11
i=1

Thus, a = 11t=1 (xi, ai)E' is an identity.

To say again what we have done, we have

n

q = [ui; vi]
i=1

and

[ui;vi] = 1'ziyiA-1
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Let

and

ri = (x1, a1)E' ... (xi-1, ai-1) '-,

qi = ri[ui; vi]ri-1

then q" q,, ... Q1 mod [E, P]. Observe that

ziyi,/3)-1r; 1.qi = 1

The product qn q1 telescopes, since xig1'x lziy; = zi_ly;_1i giving

qn ... ql = z(znyn/, /l)z-1(xlgl'xl lzlyl, /3)-1 = [z, (znyn, a)]

Therefore, qn . q1 E [E, I]. Hence, q =- qn q1 mod [E, P] implies that
q E [E, I].

In the general case we may partition {w1, , wn} into subsets with
the property that the totality of the factors (yi, j)"i and (xigixi 1yi di)-Ei fall

into inverse pairs within some S and which are minimal with respect this
property. Then apply the above argument to show that q jlj=1[zj, tj] mod
[E, P] with zj E I and tj E E. This proves that [E, I] D P fl [E, E].

We note that, in the special case that there is a splitting of the homomorphism
0: C -* N, Ratcliffe's lemma follows from an argument given in [Re49]. See
the proof of Lemma 2.4 in Chapter II. Another proof of Lemma 2.1 is due to
G. Ellis and T. Porter [E1Po86].

2.2 A characterization of free crossed modules

The following theorem of John Ratcliffe [Ra80] gives a useful homological
characterization of free crossed modules.

Theorem 2.2 If (C, a, G) is a crossed module, N = Im a, Q = GIN, and
{ca} is an indexed subset of C, then C is a free crossed module with basis
{cam} if and only if

1. Cab is a free 7GQ-module with basis {cam},

2. N is the normal closure of {aca}, and

3. 9.: H2(C) -+ H2(N) is trivial.
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Proof: Suppose that C is a free crossed module with basis {ca}. Properties
(1) and (2) were observed by Whitehead [Wh492] and follow easily from the
construction of the free crossed module on the set {ac,,,}. This is because, if
C is free, then C E/P, so clearly (2) is true. The exact sequence of groups
1 --- P -4 E -+ C -1 1 gives rise to the Stallings-Stammbach 5-term exact
sequence [HiSt7l] in homology:

H2(E) -* H2(C) - Z ®zc H1(P) -> H1(E) -* H1(C) -+ 0.

Note that H1(E) 7GGA, the direct sum of JAI-copies of the group ring, and
that we may, from the definition of P, identify the image of Z ® Hi (P) in
Hl (C) as isomorphic to IN 7G GA. Hence,

H1(C) (ZGA)/(IN ZGA) ZQA.

This shows (1) and (2).

To see that (3) holds, we use the 5-term exact sequence

H2(C)-H2(N)->K-*HI(C)-+H1(N)-30.
coming from the central extension 0 - K -3 C -4 N -4 1. Noting that the
exact sequence above is a presentation for C and that the extension

1-aI--*E-*N-+ 1
is a presentation for N, we may identify, by the formula of Hopf, H2(C)
P fl [E, E]/[E, P] and H2(N) I n [E, E]/[E, I]. Furthermore, K .^s I/P.
Then, by Lemma 2.1, the homomorphism a. : H2(C) -+ H2(N) is trivial.

Conversely, suppose that C and {ca} satisfy (1) - (3). Let C' be the free
crossed module with basis {c'a} so that ac' = aca for all a. By (2),
Im a' = N. Because C' is free, there is a G-morphism : C' -+ C such
that q(c',) = ca for each a. The equality a' = a o 0 shows that 0 induces a
homomorphism ¢0 : K' -+ K.

The 5-term homology sequence is natural, so the following diagram commutes

0 * H2(N) -4 K' -> H1(C') -> H1(N) -+ 0

II 1-0o l0 II

0 -> H2(N) -4 K -4 H1(C) -> H1(N) -* 0.

The first zeros in the above diagram come from (3).

By (1), is an isomorphism; hence, by the 5-lemma ¢0 is an isomorphism.
Observe that the following diagram commutes

0 -a K' -+ C' --> N -* 1

100 10 II

0 -* K -* C -* N -* 1.
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Hence, 0 is an isomorphism by the short 5-lemma. Therefore, C is free with
basis {c,,}.

2.3 Projective crossed modules

Fix a group G. A G-crossed module C is said to be projective if it is projective
in the category CMG, that is to say, for any surjective morphism of G-crossed
modules f : A -+ B and any G-morphism CMG g : C - B, there exists a
morphism h: C -+ A such that f o h = g.

Suppose that C is a G-crossed module and that A is a ZQ-module, where
Q = G/N, with N equal to the image of the boundary of C. Regard A as a
G-module via the canonical projection G -* Q. Then a G-crossed extension
of A by C is an extension

E:0-3A4B4C-*1
where B is a G-crossed module, a is a G-homomorphism, and g is a G-
morphism. Clearly E is a central extension.

Note that A x C is a G-crossed module with G acting diagonally and with
boundary a : A x C -+ G given by a(a, c) = a(c). We call

E0:0-*A-*AxC-*C-1
the trivial G-crossed extension of A by C.

Theorem 2.3 (Ratcliffe) If C is a G-crossed module, then the following
are equivalent:

1. C is projective;

2. every G-crossed extension 0 -* A -4 B -4 C -4 1 operator splits;

3. there is a projective ZQ-module P and a free G-crossed module B such
that P x C is G-isomorphic to B; and

.4. H1(C) is a projective ZQ-module and a* : H2(C) -+ H2(N) is trivial.

Proof: The equivalence of (1) and (2) is proved in the standard way.

To see that (2) implies (3), let {ca} be a set of operator generators of C, and
let B be a free crossed module with basis {ba} such that 8ba = aca for all a.
Because B is free, there is a G-morphism g : B -4 C such that i(ca) = rl(ba)
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for each a. It is clear that 77 is an epimorphism, because {ca} generates C
under the action of G.

Let P = ker 77. By (2), the G-crossed extension 0 -4 P -4 B -+ C -+ 1 splits
with a G-morphism. Therefore, B is G-isomorphic to P x C. Observe that
P ® H1(C) H1(B) as ZQ-modules, so P is a projective 7GQ-module.

To see that (3) implies (4), observe that P ® H1(C) Hl (B) implies that
H1(C) is a projective ZQ-module. Let i : C -+ P x C be the natural inclusion.
Then a o i = a yields the following commutative diagram:

H2(C) a.

H2(P X C) H2 (N).

By Theorem 2.2 (3), & is trivial; hence, a. is trivial. To see that (4) implies
(2), suppose that 0 : C' -* C is a G-epimorphism. We claim that 0. :

H2(C') -+ H2(C) is also an epimorphism (in fact all we will use is that
H2(C) --> H2(N) is trivial). Let K = ker a and K' = ker a'. Because
8 o 0 = a', ¢ induces a homomorphism 00 : K' -> K. According to T. Ganea
in [Ga68], there is a 6-term exact homology sequence (extending the usual
5-term sequence)

K®H1(C) -+H2(C) 4 H2(N) - K-*

According to U. Stammbach in [St73], the sequence is natural, so the following
diagram is commutative :

K' ®H1(C') -4 H2(C') -* H2(N) -* K' -4 H1(C') -+ H1(N)
10o0 .J 0. II .1c0 II

K®H1(C) -4 H2(C) -* H2(N) -+ K -* H1(C) -4 H1(N).

Because .0 is an epimorphism, q5 is an epimorphism. The 5-lemma implies that
00 is a epimorphism. Hence, 00 0 4 is an epimorphism. By (4) a* is trivial.
Hence the Ganea homomorphism K ® H1(C) -4 H2 (C) is an epimorphism.
It follows that .0.: H2(C') -4 H2(C) is an epimorphism.

By considering the 5-term exact sequence associated with the (central) ex-
tension 0 -3 ker 0 -> C' -4 C -# 1, we see that ker 0 injects into H1(C');
therefore, the sequence 0 ker 0 -> H1(C') 4 H1(C) -3 0 is short exact.
The sequence splits, because H1(C) is projective. Therefore, the sequence
0 -4 ker 0 -i C' 4 C -4 1 operator splits.

Projective modules over 7GG form examples of projective G-crossed modules.
Also, if N 4 G is a normal subgroup of G, then N is a projective (conjugation)
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crossed module if and only if H2(N) = 0 and H1(N) is a projective ZQ-
module, where Q = GIN. A group N is said to be superperfect if both
H1(N) and H2(N) are trivial. Thus, any superperfect normal subgroup N
of a group G is a projective crossed module, which is not free as a crossed
module. In the next section, we will see that projective crossed modules
abound.

2.4 Two-complexes and projective crossed modules

The purpose of this section is to demonstrate that projective crossed modules
occur in a very natural setting. Namely, if X is a connected subcomplex
of a connected 2-dimensional CW-complex Y, then the boundary map 8 :
7r2 (y, X) -+ 7r1(X) has the structure of a projective 7r1(X)-crossed module.
This theorem generalizes a special case of the theorem of J. H. C. Whitehead
(Theorem 2.9 in Chapter II), which states that if Y is obtained from X by
adding only 2-cells, then the crossed module (C, 0, G) associated with the
pair (Y, X) is a free crossed module. If X is not 2-dimensional and Y is
obtained from X by adding 1-cells and 2-cells, then it is not necessarily true
that the crossed module (C, 8, G) is projective. An example of this is obtained
by letting X = IRP3 be the real projective 3-space and Y be obtained from
X V S' by attaching a 2-cell so that the 2-skeleton of Y is the realization of
the presentation (x, y I x2, [x, y]) ([Dy871]).

Theorem 2.4 (Dy871) Let X be a connected subcomplex of a connected
2-complex Y. Then the crossed module associated with the pair (Y, X) is
projective in the category of G-crossed modules.

Proof: Let 7r1(X) = G, 7r, (Y) = H, and let i : X - Y be the inclusion map.
LetC=7r2(Y,X),Q=im{7r1(i):G-*H}, andN=ker{7r1(i):G-*H}.
We will show that (1) O : H2(C) -* H2(N) is trivial and that (2) H1(C) is a
projective 7GQ-module.

(1) Let Y(l> be the 1-skeleton of Y and let

a': C'=7r2(Y,XUY(I))-4 7r1(XUY())=G*F

be the associated crossed module, where F is a free group. Let N' = im a'
and a:C-*C', N' be the maps induced by
the inclusion X y X U Yfl>. Note that ,3 is the inclusion G y G * F and
that b is the restriction of Q to N. Then we see that W o a = /3 o a.

We claim that N = N' fl G, if we identify G with ,3G. Clearly, N C N' fl G.
To see the reverse inclusion, observe that N' is the normal closure of words
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[re] = C7ea corresponding to the boundaries Oea of the 2-cells in Y outside
those of X. Thus an element [w] E N' fl G can be written as

k

[w] = 11 ajr''a-1 (aj EG*F, ej = ±1)
i-1

where the loop w is homotopic, relative to the base point, to a loop w' in X',
the homotopy taking place inside X U Y(l).

Then we may build a map g : (B2, S1) -+ (Y, X) as follows: picture the disk
B2 with k pairwise disjoint disks Dl,..., Dk inside, each disk disjoint from
the boundary and each disk joined to the basepoint * by a straight line. The
picture is that of k balloons (or lollypops) inside B2 on strings (or sticks) being
held by one hand at the basepoint on the boundary of B2. We build the map
77 by putting w' clockwise around the boundary of B2, and running, from left
to right, the loop representing aj along each of the strings, and mapping each
disk D,, to the corresponding 2-cell ej, with the orientation being determined
by ej. See, for example, Figure 1 of Chapter 6 (where R t-* r and u t-> a).
The map on B2 - {lollypops} is that of the homotopy between w and w' in
X UYG). Thus, [77] is a member of 7r2 (Y, X) whose boundary 9[77] = [w'] E N.
Thus the claim is proved.

By the theorem of Kurosch [Se80], N is then a free summand of N' and
5 : N - N' is the inclusion onto that free summand. Applying the functor
H2(-) to the commutative diagram represented by 8' o a = 6 o 0 we have
the commutative square:

H2(C) 4 H2(N)
a*1 Ib

H2(C') H2(N').

By Theorem 14.2 of [HiSt7l] & is a monomorphism. Because (C', 5', G * F)
is a free crossed module, we have a*' = 0. Hence, &8 = 0; so 8. = 0.

(2) Let XN be the covering of X corresponding to the subgroup N and Y be
the universal covering of Y. Consider the pair (Y, XN), where XN may be
identified with a connected subcomplex of Y. Note that both k and XN are
stable under the action of Q < H = 7r, (Y).

We may identify C = 7r2(Y,X) with 7r2(Y,p-1X) using the covering map
p : Y - Y. This in turn may be identified with 7r2 (y, XN), where XN is the
component of p-1X containing the base point. We will show that H2(Y, XN)
is the abelianization of 7r2(Y, XN) (under the Hurewicz map) by the following

Lemma 2.5 Let (W, A) be a topological pair with W simply connected and
A path connected. Then the Hurewicz map h : 7r2 (W, A) -* H2 (W, A) is
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surjective with the kernel of h equal to the commutator subgroup ir2' of it2 =
ire (W, A).

Proof: The map h can be shown to be surjective by a simple diagram chase
on the Hurewicz ladder between the exact sequences (in homotopy and ho-
mology) for the pair (W, A), using the fact that W is 1-connected. In order to
see that ker h = ir2', we use the relative Hurewicz Theorem, which says that
ker h is the normal closure in ire of J (g c)c 1 c E 7r2, g E irl (A) }. Consider
the surjection 02 : ir2(W,A) - irl(A). For any g E ir1(A) there is a d E ire
with 82d = g. Thus (g c)c 1 = ((02d) c)c 1 = dcd-lc1 E 7r2. Thus,
ker h C ir2'; the reverse inclusion is obvious because H2(W, A) is abelian.

Clearly, H2(Y, XN) has a 7LQ-module structure. We will show that this mod-
ule is in fact a projective ZQ-module. Consider the cellular chain complex
C. (Y, XN) of free 7LQ-modules given by

C2(Y)/C2(XN) 4 Cl(Y)/Cl(XN) 4 CO(Y)/CO(XN)

Now, XN is connected implies that H0(Y, XN) = 0, hence al is surjec-
tive. Also, H1(Y) = 0, so im a2 = ker al . In addition, the 7LQ-module
Co(Y)/Co(XN) is a free module, so the above exact sequence is split over
ZQ. Thus, H2(Y,XN) = ker 82 is a projective 7LQ-module, being a direct
summand of the free 7LQ-module C2(Y)/C2(XN). This completes the proof
that 0: C -+ G is a projective 7LQ-module.

2.5 The kernel of a projective crossed module

Let the group homomorphism 0 : C -> G denote a G-crossed module (C, 0, G).
Let K = ker 0. The main result of this section characterizes the triviality
of K in terms of the first and second homology of N = im a and the second
homology of C. This result is then used to prove the following: Let Y be a
2-complex that does not have the homotopy type of S2, Y(l) be the 1-skeleton
of Y, and let C = 7r2(Y,Y(1)). Then 7r2(Y) = 0 if and only if H2(C) = 0.

A group G is perfect if the abelianization H1(G) = 0; G is superperfect if
both H1(G) and H2(G) are trivial.

Theorem 2.6 ([Dy912]) Let (C, a, G) be a projective G-crossed module, with
K = ker 0, N = im a, and Q = GIN. Let the conditions (i) H2(C) = 0, (ii)
H2(N) = 0, and (iii) H1(N) is a free abelian group, be denoted as hypothesis
(H). Then
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1. The kernel K = 0 implies hypothesis (H).

2. If hypothesis (H) holds, then either the ZQ-module K is trivial or the
underlying abelian group K° of K is isomorphic to the integers Z.

3. If hypothesis (H) holds, then K° Z if and only if the following are
true:

(a) the quotient group Q = 1,

(b) the group G is superperfect, and

(c) the abelianization H1(C) Z.

Proof: To see (1) recall that the following sequence is exact and central:

0-+ K-*C--N-31

If K = 0, then C = N. By Ratcliffe's characterization (2.3) of projective
crossed modules, we see that H2(C) = H2(N) = 0. Similarly, H1(C) is a
projective 7GQ-module implies that it is free abelian. Thus, hypothesis (H)
holds.

To prove (2) and (3), we need three lemmas.

Lemma 2.7 If H2(N) = 0, then K is a free abelian group.

Proof: Consider the Stallings-Stammbach sequence associated with the above
central extension:

H2(N) 0 implies that K is a subgroup of H1(C), which is a free
abelian group.

Lemma 2.8 Let A be any free abelian group. Then H2 (A) = 0 if and only if
A=0 or Z.

Proof: Let {e. a E I} be an ordered basis for A. The second homology of A
is isomorphic to the symmetric product AAA with basis {ea Aeal a < ,6} (see
[Br82]). Thus, H2(A) = 0 if A = 0 or Z. A more elementary proof would be
to notice that if A is not 0 or Z then A contains Z ® Z as a direct summand.
Hence, H2(A) contains 7L = H2(7G ® Z) as a direct summand.
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Lemma 2.9 Let M be a 7GQ-module whose underlying abelian group M° = Z.
Then M is a projective ZQ-module if and only if Q = {1}.

Proof: If Q is infinite, then no module M with M° = Z can (even) be a
submodule of a free ZQ-module. For let m E M C F, where F is a free
ZQ-module with basis B, m = E 11m;eilm; E 7GQ, e1 E B} # 0. Let the
carrier of n E ZQ be I n 1, which is the finite set of all q E Q with non-zero
coefficients in n. We may then choose x E Q so that ( m; 10 1 xmi I for some
i E {1, . . . , n}. This shows that M cannot be a submodule of a free module,
provided Q is infinite.

If Q is finite and M is a projective ZQ-module with M° = Z, then a theorem
of R. Swan ([Br82], page 239) says that the order of Q must divide the 7L-rank
of M. Thus Q = 1.

In order to prove (2),we assume that hypothesis (H) is true. Thus, we have
that H1(N) is free abelian and H2(N) = 0. Notice that the action of N on
K is trivial. This implies that the second cohomology group

H2(N, K) Hom(H2(N),K) ED Ext(H1(N), K) = 0.

(See [HiSt7l], page 222, for the universal coefficient theorem.) So the central
extension 0 -+ K -+ C -* N -+ 1 splits, as groups only, yielding C N x K.
Then H2(C) = 0 = (H1(N) 0 K) ® H2(K) (See [HiSt7l], page 222, for the
Kiinneth theorem). If H1 (N) # 0, then H1 (N) is a free abelian group implies
that H1 (N) 0 K is isomorphic to a direct sum of copies of K, which implies
that K = 0. If H1(N) = 0, then H2(K) = 0 together with the second lemma
imply that K = 0 or Z. This proves (2).

To see (3), assume hypothesis (H) together with (3a, b, c). We see that
G = N so Hl (N) = 0. Then, using the Stallings-Stammbach sequence above,
H1(N) = 0 = H2(N) shows that K H1(C) ^ Z.

For the converse, assume hypothesis (H) together with K = Z. First note
that this yields H1(N) = 0 (for otherwise K = 0). It follows that H1(C) Z.
By theorem 2.4, H1(C) is a projective ZQ-module. Lemma 2.9 then shows
that Q = 1. This completes the proof of (3) in 2.6.

Now for the application to aspherical 2-complexes. Recall that a connected
2-complex X is aspherical if 7r2(X) = 0.

Corollary 2.10 Let Y be a connected 2-dimensional CW-complex with
1-skeleton Y(l). Let C = r2(Y,Y(1)), and assume that Y does not have the
homotopy type of the 2-sphere S2. Then the following are equivalent:
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1. Y is aspherical;

2. H2(C) = 0; and

3. C is a free group.

Proof: We let (C, 8, G) denote the free crossed module

82 : ir2(Y,Yili) -4 71(Yil>).

Because N = im 8 is a subgroup of the free group G, then H1(N) is free
abelian, and H2(N) = 0 are automatic. Because Y(l> is a 1-complex, we
have K = ker 8 = 7r2(Y). Then, part (1) of the above theorem shows that
K = 0 implies that H2(C) = 0. If H2(C) = 0 and ir2(Y) = 0, then, by part
(3) of the above theorem, we have G is free and superperfect, so G = 111.
Hence, Q = irl (Y) is trivial. But then Y is a simply connected 2-complex
with ir2(Y) = Z, hence Y _- S2, which was forbidden. Clearly (1) implies
(3), because C = N. If C is free and Y is not aspherical, then an argument
similar to the above shows that y = S2.

We contrast this with the identity property encountered in Lemma 2.4
of Chapter II (see also Section 4 of this chapter). Assume that Y is the
realization K(P) of the presentation P = (x I r) of the group Q. Here the
group G = F(x) = irl(Y(')), where F(x) is the free group on the set x, and
Q = 7r1(Y) = GIN, where N is the normal closure of the set r. It is a simple
fact (see Chapter II) that any connected 2-complex has the homotopy type
of a 2-complex which is the realization of a presentation. Consider the free
crossed module (C, B, G) associated to the pair (Y,Y( ). Let K = ir2(Y) _
ker 8. It follows from the Stallings-Stammbach sequence associated to 0 -+
K -+ C -4 N -+ 1 that Y is aspherical if H1(C) = H1(N) is isomorphic
to the free Z7r1(Y)-module with basis in one-to-one correspondence to the
2-cells of Y. This is the traditional way of detecting asphericity, known as
the identity property: For each product of conjugates of elements of r U r-1,

n

{gi(R'i)g'Igi E G,Ri E r,ei = l},
i=1

that freely reduces to 1 E G, there is a pairing i H j of the indices such that
Ri = R;, ei = -e and giN = g;N. This is succinctly encapsulated by the
statement that H1(N) is a free Z7r1(Y)-module on the basis {R[N, N]IR E r}.

Thus, the hypothesis (H) in 2.6 (with H1(N) a free abelian group) is an
apparent weakening of the identity property, or perhaps, better said, trades
one hard problem for another. It is not expected that showing that H2 (C) = 0
will be any easier in general, but it might allow one to bring the extensive
machinery surrounding the homology of groups to this problem.
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3 On the Second Homotopy Module of a 2-
Complex

Let M -- G and N -> G be G-crossed modules. In this section we will study
the coproduct M m N -> G of crossed modules. We will prove the theorem
of M. Gutierrez and J. Ratcliffe [GuRa8l] showing how the second homotopy
group of a 2-complex is determined by its subcomplexes. We will also dis-
cuss a 2-dimensional version of the Brown-Higgins theorem ([BrHi78], [Br84])
which shows that in many cases the following is true: If K is a connected
2-complex, K1 and K2 are connected subcomplexes such that K = K1 U K2
and K1 fl K2 is a connected subcomplex Ko of K, then the relative group
7r2(K, KO) is a coproduct 7r2(Kl, Ko) m 7r2 (K2, KO). The coproduct of two
crossed modules was first defined by J. H. C. Whitehead in [Wh411]. We
follow the development of W. Bogley and M. Gutierrez in [BoGu92].

3.1 Coproducts of crossed modules

First, some notation. If M is a G-group, we write [m, g] = m(g m-1) and
[g, m] = (g m) m-'. For R C G, [M, R] is the smallest G-stable subgroup
containing the [m, r], and MR = Ml [M, R]. Similarly, if K is a ZG-module
and R C G, let [R, K] be the submodule generated by the elements (r - 1)k,
where rERandkEK,andletKR=K/[R,K].
We will define the coproduct in the category CMG, due to J. H. C. Whitehead.
Let d : M -4 G and d' : N -> G be G-crossed modules. To establish
notation, we deal with elements m, mk, µ, ..., and n, nk, v, ..., lying in M
and N, respectively. If no confusion arises, we will write do for d'n.

We define the coproduct M x1 N of two G-crossed modules M and N to be
the quotient of the free product M * N by the smallest G-invariant normal
subgroup containing the Peiffer relations

r(7n, n) = mnm-'(dm n-1) = [m, n][n, dm]

and

s(m, n) = mmn-1(dn m-1) = [n, m][m, dn].
In other words, in M >a N, [m, n] = [dm, n] = [dn, m] for all m E M and
n E N. The map dd' : M oa N -4 G, given by dd'(m * n) = dmd'n, where
m * n E M * N, defines a G-crossed module structure on M m N. There are
inclusion induced G-maps i : M -* M m N and i' : N -4 M >a N.

Lemma 3.1 The sequence 1 -4 [iM, i'N] -4 M to N -4 MdN x NdM -+ 1 is
exact in the category of groups.
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In particular M m N abelianizes to

H1(M)dN®Hl(N)dM^ ZOWN Hj(M)ED Z®ZMH1(N)

We note that M m N is the push-out in the category CMG.

The relations r(m, n) and s(m, n) suggest a kind of double semi-direct product
(first noted in [Br84]). Consider the semi-direct product

MaN = M * N/ << s(m,n),Vm,n» .

There is the defining split exact sequence 1 -> M -+ M a N -* N -* 1
with the action of N on M given by the identity s(m, n). One then argues
that M ua N is the quotient of M i N by the normal closure of the identities
r(m, n). Note that both M and N embed in MiN (so we may refer to m and
n .as elements of M a N without ambiguity) and that dd' induces a G-map
dd':MaN->G.
The first four parts of the following lemma shows that all the elements of MaN
can be written as µv. In particular, in M a N, r(m, n) = [m, dn][n, dm]. We
denote the latter by {m, n}, and the smallest G-normal subgroup containing
the {m, n} by {M, N}.

Lemma 3.2 If m, mk, p E M, n, nk, v E N, g E G and e = ±1 then the
following equalities hold, the first one in N and the remaining in M a N.

1. If x E G we have xdn n` = x n`,

2. [dm, dn] p = [m, dn](p)[dn, m],

3. [dn, dm] p = [dn, m] (p) [m, dn],

.4.

5.

6. p{m, n}µ-1 = {m, n},

7. v{m, n}v-1 = {dv m, dv n},

8. {m, n}-1 = {dn m, n-1}, and

9. llk=1{mk, nk} = (IIk-1[dnk, mk])-1(TIk_1[nk, dmk])
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Proof: The first four follow easily from the definitions. Equations (5)-(7) are
left to the reader, they are proved in [Br84]. They show that {M, N} is the
subgroup generated by the {m, n}. To see (9), it is enough to show the case
p = 2. By (3) and (4) {m, n}{p, v}

= [m, dn] ([dn, dm] [p, dv]) [n, dm] [v, dµ]

_ [m, dn] [dn, m] [µ, dv] [m, dn] [n, dm] [v, dfc]

= [p, dv] [m, dn] [n, dm] [v, dii]

_ ([dn, m] [dv, µ])-'[n, dm] [v, dµ]

Formula (8) is trickier: {dn m, n-1 }{m, n}

= [dn,m]n-1((dndmdn-1) n)[m,dn][n,dm]

by definition. By (1) and (3), (dndmdn-1) n = so the expression
reduces to [dn, m] [dm, n] [m, dn] [n, dm]

= [dn, m] ([dm, dn] [m, dn])

_ [dn, m] [m, dn] [m, dn] [dn, m] = 1

by (2). Formulas (8) and (9) were first proved in [BoGu92].

The importance of (8) is that it shows that all elements of {M, N} are prod-
ucts of the {m, n}, which products are described by (9).

We note that
[ker d, dN] C ker i C ker d fl [M, dN].

These inclusions appear in [Gi92] as well as [BoGu92].

3.2 A special case

In general it is hard to determine ker i or even whether [ker d, dN] C ker i
is zero. An interesting special case is the following: let M and N be sub-G-
crossed modules of a G-crossed module X. Then M m N -- X has image
MN and i is monic. We may thus omit i without ambiguity. The following
result is contained in [Br84], (2.7) and (2.11), and [BoGu92],(top of page 47).

Theorem 3.3 If M and N are G-subgroups of a G-group X, then
ker (M m N -4 MN) = M fl N/[M, N].
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Note that M n N means intersection in X; in M x N, iM n i'N = [iM, i'N].

Proof: As G/dN-groups, and thus as G-groups, M ra N/N M/[M, N].
The following commutative diagram shows that a is an isomorphism.

1 1

4.

N = N
1 1

0 * K -+ MmN -* MN -* 1

1a 1 1
o -* M n N/[M, N] -* M/[M, N] -* M/M n N -* 1

4.

1 1

As pointed out in [Br84], an explicit formula for a_1, deduced from the snake
lemma, is a-1 (µ[M, N]) =

3.3 On the kernel of a coproduct of crossed modules

If f : M -+ P and g : N -a Q are G-morphisms, we have G-morphisms
f o : M -+ P -+ P ca Q and go : N -* Q -+ P m Q and so the map
f m g : M Da N -+ P m Q is called the direct sum map . Recall that
ker (f ca g) must be a 7LG-module.

Theorem 3.4 ([BoGu92], Lemma 1.4) If f and g are onto, then

ker (f m g) = i(ker f) + i'(ker g).

Proof: If f (m)g(n) = 1 in P m Q, then the multi-valued Lemma 3.3 and the
hypothesis imply that we can find mk, nk so that f (m) = (ff [dg(nk), f (mk)])-1
and g(n) = f l[g(nk), df (Mk)] because dg(n) f (m) = do f (m) = f (dn m) and
similarly df (m) g(n) = g(dm n). There are elements v E ker f and r E ker g
so that m = (ff[dnk, Mk])-la and n = r r J [nk, dmk] and m m n = i(a) + i'(r)
in Mm N.

Note that normal subgroups R and S of G can be considered as G-crossed
modules with boundary the inclusion map and G action by conjugation.

We define I = i(ker d) n i'(ker d').
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Theorem 3.5 ([BoGu92], Proposition 1.5)

1. I = ker(dd') fl [iM, i'N].

2. If I = 0, then ker i = ker d fl [M, dN] and ker i' = ker d' fl [N, dM] so
i(ker d) + i'(ker d') is the direct sum

ker d/(ker d fl [M, dN]) ® ker d'/(ker d' n [N, dM]).

3. If dd' : M D4 N -+ G splits as a group homomorphism or if H2(M .i
N) -4 H2(im dd') is onto, then I = 0.

Proof: To prove (1), we observe that i(ker d) = ker dd' fl iM and that
i'(ker d') = ker dd' fl i'N. This together with the fact that iM n i'N =
[iM, i'N] completes the proof.

For (2), we see that if I = 0, then ker dd' embeds in M >a N/[iM, i'N] =
MdN x Ndw by Lemma 3.1 so we have a short exact sequence

0 -+ ker i -* ker d -+ i(ker d) C MdN,

which shows that ker i = ker (ker d -* MdN) = ker d fl [M, dN].

To see (3), if dd' : M >a N -4 im dd' splits, then it is easy to see that
ker dd' fl [M >a N, M >a N] = 0. More generally, if H2 (M x N) -* H2(im
dd') is onto, the central extension

0-4 kerdd'-+MmN-+ im dd'-*1

is a commutator extension and the kernel of dd' is algebraically disjoint from
[MmN,MmN].
The following theorem is due to M. Gutierrez (unpublished). An argument
of this sort was used in [BoGu92], Theorem 2.3. An example where the sum
is not direct appears in [BoGu92], Example 1.6.

Theorem 3.6 Let d : M -* G and d' : N -3 G be two G-crossed modules.
Write R = dM, S = d'N, and I = i(ker d) fl i'(ker d'). We have a sequence

0 -+ i(ker d) + i'(ker d') -a ker dd' - R fl S1 [R, S] -+ 0

of ZG/RS-modules which is exact and natural. In general the sum in the left
hand term is not direct. If H2(M >a N) -* H2(im dd') is onto, then I = 0
and the sum is direct. In that case, ker i = ker d fl [M, dN].
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Proof: Consider the commutative diagram of G-crossed modules:

0

1
0 RnS/[R,S]
1 1

0 --) i(ker d) + i'(ker d') -+ M ca N "DODO' R ra S -* 1

1 II 1

0 -a ker dd' - M m N RS - 1
1
1

obtained from Lemmas 3.5 and 3.6. The snake lemma then gives the sequence.

Finally, we note that if d : M - G and d' : N -* G are two projective
G-crossed modules, then dd' : M >a N -- G is also a projective crossed mod-
ule. This can be proved using using Ratcliffe's characterization of projective
crossed modules (Section 2).

3.4 Computing x2 from subcomplexes

The following theorem shows how the second homotopy group of a 2-complex
is determined by those of its subcomplexes. This was first proved by M.
Gutierrez and J. Ratcliffe in [GuRa8l], in the case that KO is the 1-skeleton
of K. The present version contains elements of results from [GuRa8l], [Br84],
and [BoGu92, Theorem 2.3].

Theorem 3.7 Let K be a connected 2-complex, Kl and K2 be connected sub-
complexes such that K = Kl U K2 and Kl n K2 is a connected subcomplex KO
of K, and let ij : K; -3 K (j = 0, 1, 2) be the inclusion maps. Assume fur-
ther that ir2(K, Ko) ir2(Kl, Ko) oa 7r2(K2i Ko) as a irl(Ko) -crossed module.
Then there is an exact sequence of ir, (K) -modules

0 -4 ii.7r2(Ki) + i2.ir2(K2) 4 7r2(K) -4 Nl n N2/[Ni, N2] -4 0

where (is induced by inclusion, Ni is the kernel of 1r1(Ko) - 7rl (Ki), and the
action of 7r1(K) on Nl n N2/[N1, N2] is induced by conjugation in irl(Ko).

Proof: This is a corollary to the above Theorem 3.8.

The key question is then: Is ir2(K, Ko) ir2(Kl, Ko) >a 1r2(K2i Ko) as a
1r1(Ko)-crossed module?
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If K is obtained from Ko by adding only cells in dimension 2, then the an-
swer is clearly "yes", because everything in sight is free ([BrHi78], [Br84],
[GuRa8l], [BoGu92]). It is shown in [BrHi78] and [Br84] that the answer is
"yes" if the pairs (K1, KO) and (K2, KO) are 1-connected, giving the so-called
Brown-Higgins theorem. In [BoGu92], if (K, K1) is 1-connected, necessary
and sufficient conditions are given for a positive answer.

We content ourselves with the following simple characterization (see [BoGu92],
in the argument of Theorem 4.5).

Let M = ir2(Ki, Ko), N = ir2(K2, Ko), C = 7r2 (K, Ko), and G = 7ri(Ko)
The inclusion induced maps M -* C and N -+ C induce a G-morphism
a : M m N -* C, which has kernel P, which is a 7GG-module. Then a is an
isomorphism if and only if

1. a is surjective, and

2. a induces an isomorphism a : Hl (M x N) Hl (C).

To see this, observe that the conditions are clearly necessary. Assuming (1)
and (2), we see that, because P is central in M m N, the projectivity of C
and the surjectivity of a imply that M ca N C x P as G-groups. Thus,
Hl (C) ® P ,:: Hl (M ca N), so (2) implies that P = 0. O

Open problem: In the light of the previous section and the above theorem,
it is clearly important to compute H2 (M m N) in terms of H2(M) and H2(N).

Because of the projectivity of C, the surjectivity of a implies that of H2(M m
N) -3 H2(C). Hence, if the former is trivial then the latter is as well, and so
the triviality of the ker {C -> G} can be detected by using Theorem 2.6.

As an indication of the power of (non-2-dimensional) version of Theorem 3.9,
we state a lovely theorem of R. Brown [Br84]. This has been generalized (in
a slightly different context) to H3 in [BoGu92] and to H4 in [DuE1Gi92]. A
direct proof is given in [BoGu92].

Theorem 3.8 Let M and N be normal subgroups of a group and let L =
M fl N. Then there is the exact sequence

H2(MN) -+ H2(M/L) ® H2(N/L) -* L/[M, N]

-* Hi (MN) -> Hi(MIL) ® Hi (N/L) -> 0.

As an example of Theorem 3.9, (taken from [GuRa8l]) consider the 2-complex
K modeled on the standard presentation {x, y ; x2, [x, y] j for the group Z2 X Z.
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Let K1 be the real projective plane wedged with a copy of S' modeled on
{x, y; x2} and let K2 be the torus, modeled on {x, y; [x, y]}. Because ir(Ki)
is generated by (x - 1) in Z(Z2 * Z), we have i1*ir2(K1) = 7L(Z2 X Z) (X - 1),
which is isomorphic to 7L (7L) = 7L[t,t-1] with (x - 1) corresponding to 1, and
the action of 7L2 X 7L on 7L(7L) given by x u = -u and y u = tu. As K2 is
the torus, we have 7r2(K2) = 0.

If f is in the free group F(x, y), let << f >> denote the normal closure off in
F(x, y). An element of << x2 >> is of the form rj= 1 fx2f;f, 1 with e; = ±1.
Such an element is in << [x, y] >>, the commutator subgroup of F(x, y), if
EL1 e, = 0. It is now clear that << x2 >> n << [x, y] >> _ « [y, x2] >>. One
sees that x acts trivially on << [y, x2] >> /[« x2 >>, << [x, y] >]. Therefore,
[<< x >>, << [y, x2] »] C [<< x2 >>, << [x, y] >]. A calculation shows that an
element of the form [ f x2 f -1, [x, y]] is in [« x >>, << [y, x2] >]. Therefore,

N1 n N2/[N1, N2] _ << [y, x2] >> /[« x >>, << [y, x2] >],

which is the relation module of the group (x, y I [y, x2] ) modulo the action
of x. Hence, N1 n N2/[N1, N2] Pzi 7L (7L) Z[t, t-1] with [y, x2] corresponding
tot, and the action of7L2xZonZ(Z)given

Thus the exact sequence of the theorem becomes

0 -> 7L (7L) - ire (K) -4 Z (7L) -4 0.

Although the sequence splits as a sequence of Z(Z)-modules, we claim that it
does not split as Z(7L2 X 7L)-modules. Observe that the element [y, x2] yields
the identity

(yx2y 1)x-2x[x, y]x-1 [x, y] = 1.
Therefore, 7r2 (K) is determined by (x -1, 0) and (y -1, x + 1) in 7L (7L2 x 7L)
Z(Z2 X Z). Note that

x(y-1,x+1)=(y-1)(x-1,0)+(y-1,x+ 1).
Hence the action of x on ir2(K) 7L (7L) ® Z(7L) is given by x(1, 0) _ (-1, 0)
and x(0,1) _ (t - 1,1).

Suppose that the sequence 0 -+ Z(Z) -> Z(Z) ® Z(Z) -* Z(Z) -* 0 splits via
o, : Z(7L) -4 7L (7L) ® Z(7L). The v(1) _ (u, 1) for some u E 7L (7L). Because
x acts trivially on the second copy of 7L (7L), the element (u, 1) must be
invariant under the action of x in order that v respect the action of x ; but
x. (u, l) = (-u + t - 1,1) and -u + t - 1 # u, because (t - 1) is not
divisible by 2 in Z(7L). Therefore, the sequence does not split as a sequence
of Z(7G2 x 7L)-modules.

This example is especially nice because one can easily visualize the universal
cover of K and verify the calculations. We leave this as an exercise for the
reader.
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4 Identity Properties

Let P = (x I r) be a presentation of the group G. As usual, we let K = Ky
be the 2-complex canonically associated with P and k be the universal cover
of K. The second homotopy group of K can be thought of as a submodule
of the free left ZG-module C2(K) ®REr ZGeR by identifying 7r2(K) as
H2(K) = ker (C2(K) -4C1(K)).

If L is a subgroup of G, let IL be the augmentation ideal in ZL. Let
1 -* N -+ F(x) -4 G -> 1 be the presentation of G, where F(x) is the
free group on the set x and N = << r >> is the normal closure of the set of
relators r inside F(X). Let 0: F(X) -4G be the natural quotient, L be any
subgroup of G, and K = ¢'1L. We say that the presentation P has the right
(resp. left) L-identity property if, for each product of conjugates of elements
of r U r-1, IIL 1 ffR, f; 1, where f; E F(x), R, E r, and e; = ±1, that reduces
to the identity element 1 E F(x), there is a pairing i H j of the indices such
that Ri = Rj, e; = -ej, and Kf1 = Kf3 (resp. ffK = fjK).

The terminology "right identity property" comes from the fact that K fi =
K fj as right cosets of K.

The identity property has been studied in various guises in the these places:
[BaHoPr92], [BoPr92], [BrHu82], [ChCoHu8l], [Co54], [Dy912], [GiHo92],
[Gi93], [Ha91], [Pa63], [Pr922], [Pr91].

We show in the first subsection that the presentation P has the right (resp.
left) L-identity property if and only if, for K = Kp, each element t; E ir2(K) C
C2(K) has all its coordinates lying in IL ZG (resp. 7LG IL).

When L is normal in G, then the left and right identity properties coincide,
and we can refer simply to the L-identity property.

A presentation that has the {1}-identity property is aspherical; i. e., 7r2(K) _
0, (see Chapter II and Section 2 of this chapter).

For any subgroup L of G, let KL denote the covering of K corresponding to
the subgroup L. A 2-complex K is said to be L-Cockcroft if the Hurewicz map
ir2(K) -* H2(KL) is trivial. It is said to be Cockcroft if it is G-Cockcroft. A
presentation is said to be L-Cockcroft if the corresponding 2-complex is also.
We will show in the next section that the presentation P is L-Cockcroft if
and only if P satisfies the right L-identity property. This property was first
noticed in [Co54] in connection with the question of J. H. C. Whitehead. In
particular, if X is a connected 2-complex that is a subcomplex of an aspherical
2-complex Y and L = ker {7r1(X) -> 7rl(Y)}, then X is L-Cockcroft. This is
easily seen to be true by looking at XL as a subcomplex of the contractible
space Y.
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On the other hand, the left identity property arises quite naturally if one
thinks about formulating a generalization of the 1-identity property by using
pairings of terms of identity sequences (or, equivalently, pairings of disks of
spherical pictures).

Just as an example of the utility of the Cockcroft property in group theory,
we state the following theorem from [Dy871]. If L is a normal subgroup of
the group G, the weight of L in G (denoted by wtGL) is the minimal number
of elements whose normal closure in G is L. A group Q is said to be a Rosset
group if Q contains a non-trivial normal abelian torsion-free subgroup.

Theorem 4.1 Suppose 1 -1 L -+ G -+ Q -> 1 is an exact sequence of
groups with Q a Rosset group, G finitely presented, H1 (L) finitely generated
as an abelian group, and wtGL < oo. Let X be any finite 2-complex with
fundamental group isomorphic to G. Then the Euler characteristic X(X) > 0,
with X(X) = 0 iff X is L-Cockcroft and H2(L) = 0.

4.1 H-Cockcroft complexes

Let X be a 2-complex with fundamental group 7rl (X) = G; such a complex
is called a (G, 2) - complex. For any subgroup L < G we say that X is
L-Cockcroft if the Hurewicz map 7r2(X) -+ H2(XL) is trivial.

There are many ways to characterize this property. Let us describe several.
For any group G the augmentation ideal in ZG is denoted by IG. For any
(G, 2)-complex X, we let C. (,k) -> Z denote the augmented cellular chain
complex of the universal cover X of X (considered as free left ZG-modules
with a preferred basis determined by the cells of X). From the definition it
follows that if we choose any basis whatever for the free ZG-module C2(X),
then X is L-Cockcroft if the coordinates of each element of ir2(X) C C2(X)
are contained in the right ideal IL 7LG of 7LG. This follows because we may
identify C2(XL) as Z ®Z, C2(X) = C2(X)/(IL C2(X)) as an abelian group.
If Lisa normal subgroup of G, then, of course, I L 7L G = 7LG I L and C2 (XL )
is a free ZG/L-module.

For any (left) ZG-module M that is a submodule of a free 7LG-module F,
define the Fox ideal of the inclusion M C F, .T(M C F) = .FM, to be the
two sided ideal generated by all the coordinates of elements of M (for some
choice of a basis for F). The ideal FM is independent of the choice of the
basis for F because it is 2-sided. Most of the following theorem was proved
in [BrDy81] and [Dy911].
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Theorem 4.2 The following are equivalent for the (G, 2) -complex X:

1. The complex X is L-Cockcroft.

2. The coordinates of each element of 7r2(X) are in the ideal IL ZG.

3. The Fox ideal.T(7r2(X)) is contained in the ideal IL 7LG.

4. If i : X -+ Y is the inclusion of X into the [H, 2] -complex Y so that
L C ker {irl(X) -+ irl(Y)}, then 7r2(i) is trivial.

5. If X is the realization of the presentation calP = (x I r) of G and N
is the normal closure of the set of relators r, then

ZG OzL H1(N) ^ ®(Z(L\G)R
REr

where L \ G is the set of right cosets of L in G, and the former group
is generated by the set r = {R[K, N] I R E r}.

6. If X is the realization of the presentation P = (x I r) of G, then P has
the right L-identity property.

Proof: The equivalence of (1) and (2) is given in the paragraph preceding the
statement of the theorem. The equivalence (2) q (3) follows because 7r2(X)
is a left module and the coordinates are contained in the right ideal IL 7GG.

The equivalence (1) q (4) is most useful. It shows that (for normal subgroups
L) that the L-Cockcroft property is the answer to the question: when can you
add 1-cells and 2-cells to X to "kill" the map on ir2? Let K = ker {7r1(X) -+
irl(Y)}. This follows because the map ir2(i) factors into the maps Ooh, where
h is the Hurewicz map 7r2(X) -* H2(XK) and ,Q : H2(XK) y 7r2(Y) is the
map induced by the inclusion XK -+ Y.

In order to prove (1) e* (5), recall that the presentation P = {x; r} gives rise
to an exact sequence 1 -* N -+ F(x) -+ G -+ 1, where N = « r >> is the
normal closure of the set of relators r inside F(X). Furthermore, recall that
any (G, 2)-complex has the homotopy type of one which is the realization of
a presentation.

Now ir2(X) is defined by the sequence

0-7r2(X) -+C2(X) = ®ZGR-* H1(N) -* 0.
REr

By tensoring this sequence with Z ®z,. - we see that

ZOzc ir2(X) -, (®ZGR)/(IL' (®7GGR)) -+ ZOzr Hi (N) -> 0
REr REr
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is exact. Note that Z ®Z, H1(N) N/[K, N]. Thus, X is L-Cockcroft if

7G ®z. H1(N) ®(7GG/IL 7GG)R
REr

which in turn is isomorphic to

®Z(L\ G)R (7G(K\ F)R,
REr REr

where L \ G denotes the set of right cosets of L.

Now for the equivalence of (5) and (6). So assume that

®7G(K\ F)eR = Z(K\ F)r Z®ZL H1(N)
REr

via the basis assignment eR -* R[K, N] for each R E r. We will verify the
right L-identity property. If jI 1 f2R7` f- 1 = 1 (f, E F(x), Ri E r, and
EZ = ±1), then En 1 E{ fiR; fi 1 = 0 in H1(N), which in turn implies that
E 1 E{(1 0 f2R; f; 1) = 0 in 7L ®z H1(N). Thus the hypothesis implies that
En 1 E;(Kg;)eR; = 0 in EREr(7L(K \ F)eR. Thus for each R the partial sum
ER;=R E;(Kg;)eR; is a member of IK . ZF. This implies the existence of the
pairing with the necessary properties.

To see the converse, we build the group E, the free group on the set F x r,
and the exact sequence 1 -* I - E -4 N -4 1, where the map a sends
(f, R) H f R f -1 and I is the group of identities. Recall that the normal
subgroup P of I is the subgroup of Peiffer identities, and that the relative
homotopy group ir2(X,X(1)) = E/P, while ir2(X) = I/P. Thus we have the
following commutative diagram with exact horizontal rows:

1 I -+ E -°> N -3 1

a 1 1 II0 - I/P -* 7r2(X,X(1)) -+ N -+ 1

77 'l 1 1
0 -4 7r2(X) -4 7G(G)r 4 H1(N) -* 0

sl fl 1

0 - W -i Z ®zLZ(G)r Z ®Z, H1(N) - 0.

All the vertical arrows except s are clearly surjective. We claim that s is
surjective as well. Let Q E ker 10 p = W. Then there is an x E 7G(G)r
such that f(x) = f. Because Z ®ZL H1(N) = H1(N)/IL H1(N) we must
have p(x) E IL H1(N); hence, 3 y E IL Z(G)r so that p(x) = p(y). Thus,
p(x - y) =0 and s(x - y) = f (x - y) = f (x) -f(y) = E-0. Therefore, s is
surjective.
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Thus, to each f E W, there corresponds an identity z = ff (fi, Ri)E' E I; that
is, p(z) = ff (ffR7 f; 1) = 1 E F with arjs(z) = f. Now we can easily see that
P has the right L-identity property implies that W = 0. For let f E W and
let z = fI(fi, R1)Ei E I with arts(z) = B. Hence, the existence of a pairing
shows that t = E ei(K fi)e(R1) = 0. Hence, W = 0.

For example, let Y be the realization of a one-relator presentation (x I R) of
a group G. We write the relator R = S¢ in the free group F(x), with S not
a proper power, and q > 1. Let H be the normal subgroup generated by the
image S of S in G. Then, Y is L-Cockcroft if and only if L contains H. This
follows because ir2(Y) ZG(S - 1), as a submodule of ZG.

4.2 Characterizing Cockcroft complexes

In this section, we characterize when a finite presentation P = (x I r) of the
group G is Cockcroft; that is to say, when the realization K of P has trivial
Hurewicz map 7r2(K) -+ H2(K). We have seen from the above theorem that
K is Cockcroft if K has the G-identity property. To restate this in detail:
for each product ffn 1 f1R2'ff1, where fi E F(x), Ri E r, and ei = ±1, which
reduces to the identity element 1 E F(x), there is a pairing i H j of the
indices such that Ri = R; and ei = -ej. This is sometimes called the weak
identity property [Dy911].

The directed deficiency of the finite presentation P is dir def P = Irl - Ixi.
The directed deficiency is useful because it "goes in the same direction" as
the Euler characteristic of the realization of P; i. e., dir def P + 1 = X(IPI)
The directed deficiency of a finite presentable group G, denoted dir def G, is
the minimum of the directed deficiencies dir def P for all finite presentations
P of G.

The finite presentation P of the group G is said to be efficient if dir def G =
sH2(G)-rank H1(G), where sA denotes the minimum number of generators
of the finitely generated abelian group A. A group G is said to be efficient if
it admits an efficient presentation.

Theorem 4.3 Let P = (x I r) be a finite presentation of a group G and K
be the realization of P. Let N be the normal closure of the set of relators r
in the free group F(x). Then the following are equivalent.

1. K is Cockcroft.

2. P has the G-identity property.

3. Z ow H1(N) Zr.
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4. P is an efficient presentation and H2(G) is free abelian.

Proof: We have already shown the equivalence of (1), (2), and (3). We show
now the equivalence of (3) and (4). Assume that (4) is true and consider the
following ladder of exact sequences:

0 -a H2(K) -a Zr Z - H, (K) -* 0
aJ a II II

0 -* H2(G) - 7G ®zc H1(N) -°* H, (F) -4 H1(G) - 0.
where the upper sequence is derived from the cellular chain complex
of K and the lower sequence from the 5-term exact sequence of Stallings-
Stammbach [HiSt7l]. Notice that the maps a and,3 are surjective. Now P is
efficient and H2(G) is free abelian implies that dir def P =
Irl - jxj = rank H2(G)- rank H1(G). By rank arguments, we have Irl - jxj _
rank H2(G)- rank H1(K). Thus, rank H2(G) = rank H2(K). But a is sur-
jective implies that a is an isomorphism. The five lemma then implies that
,3 is an isomorphism, so that (3) is true.

Assuming (3) is true, we see that 3 is an isomorphism; hence, so is a. So
H2(G) is free abelian and Irl - jxj = sH2(G)- rank H1(G). Hence, P is
efficient.

As an example, we consider the group G of [BrGe84] having presentation

P=(a,bI r,s)

where r = [ab-1, a-'ba], and s = [ab-1, b-la-lbab]. It is shown in [BrGe84],
Theorem 7.1, that Hi(G) Pt Z ® 7G for all i > 1. Thus, K = I PI is Cockcroft.

The following two theorems are due to W. Bogley in [Bo92]. The first is a
way of building a Cockcroft complex from two Cockcroft subcomplexes.

Theorem 4.4 Let X be the realization of the presentation P = (x I r, s),
p = << r >>F, and or = << s >>F, where F is the free group on the set x.
Let M be any subgroup of F containing up, with images N = Map in G/vp,
Np = Mp in G/p, and No = My in Gla. Let X,. be the realization of (x I r),
X3 of (x i s). Then, X is Cockcroft if and only if X, is Np-Cockcroft, X3 is
No-Cockcroft, and or fl p g [p, M] fl [v, M].

Theorem 4.5 Let X be the realization of the presentation P = (x I r) and
let F be the free group on the set x. Let Fn denote the lower central series
of F, defined by F1 = F and Fi+1 = [F, F;] for all i > 1. If, for some n > 1,
the image of the relator set r in the free abelian group F,,/F9z+l is linearly
independent, then X is Cockcroft.
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For example, if P = (a, b I r, s), where r = aba-1b2 and s = bab-1a3, then
the image of the set {r, s} is linearly independent in Hl (F); hence, IPA is
Cockcroft. This also follows because clearly, H2(IPI) = 0.

As another example, we consider a group G having a presentation P = (x I r)
for which the image of the set r in H1 (F) is linearly independent. Assume
further that H1 (G) is free abelian. Then, G is an E-group [St74] and X = 1P1
is not only Cockcroft, it is very Cockcroft. Let G(a) denote the transfinite
derived series of G, where a is any ordinal; this is defined as G(1) = G,
G(a + 1) = [G(a), G(a)], and G(,3)= (1 {G(a) ja < ,l3}, for any limit ordinal
/3. If we let P(G) denote the intersection of the transfinite derived series,
then X is P(G)-Cockcroft.

4.3 Minimal subgroups

Let X be a (G, 2)-complex. It is immediate that, if X is L-Cockcroft and if
L < H, then X is H-Cockcroft. Further, if X is L-Cockcroft and g E G, then
X is gLg-l-Cockcroft, because the coverings XL and XgL9-1 are equivalent,
or algebraically because I(gLg-1) = g(IL)g-1 and so

I (gLg-1) - ZG = g(IL)g-1 ZG = gIL ZG.

Thus 7r2(X) C IL C2(X) implies that 7r2(X) = gir2(X) C gIL C2(X) _
I(gLg-1) C2(X). Given a Cockcroft (G, 2)-complex X it is therefore of
interest to determine minimal subgroups L of G such that X is L-Cockcroft.
The existence of such minimal subgroups has been proved independently by
J. Harlander [Ha91] and N. Gilbert and J. Howie [GiHo92].

Theorem 4.6 Let X be a Cockcroft (G, 2)-complex. Then there exists a
subgroup L of G which is minimal with respect to the property that X is
L-Cockcroft.

We will give both proofs, for reasons that will soon become clear.

Proof: ([GiHo92]) Let Lo > L1 > . . . be a descending chain of subgroups of
G with intersection L,,,, and suppose that for all i > 0, the 2-complex X is
Li-Cockcroft. We have the Fox ideal .F(ir2(X)) = F(X) C ILi ZG for all
i > 0, and so.F(X) C (li>o ILi ZG. We claim that ni>o ILi ZG = IL" ZG,
so that X is Lam-Cockcroft. An application of Zorn's lemma completes the
proof.

Consider the descending chain IL1 - ZG > . . . of right ideals of ZG.
It is clear that ni>o ILi ZG D IL,, ZG. Now suppose that a = E 1 Ajgj E
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(li>o ILi 7LG. Considering the image of a in 7L(Li \ G) we see that for all
i>0,andallgEG,

E A3=0.
g,EL,g

We obtain a partition of the indexing set {1, ... , m} such that the sum of
those Aj indexed by each part is zero, and if i < k then Lk produces a finer
partition than Li. Let J1 U . . . U Jp be the finest partition of {1, . . . , m} so
produced. Renumber if necessary so that J1 = {1, ... , q}. Then for all i > 0,
{gl, . . . , gq} C Lihi f o r some hi E G, and therefore gi 1gi E Li for j = 1, ... , q.
It follows immediately that gi lgj E L. for j = 1, ... , q. A similar argument
applies to each of the other parts of the partition. We conclude that a has
trivial image in Z(L,, \ G), so that a E ILK 7L G, as required.

Proof: ([Ha91]) (Sketch) Again, Let L0 > L1 > . . . be a descending chain
of subgroups of G with intersection Lam, and suppose that for all i > 0, the
2-complex X is Li-Cockcroft. This chain of subgroups induces a sequence of
coverings of X:

...-*XL1-+ XL; , - ...- XL,,
which in turn induces sequences on the cellular chain complexes and on
the corresponding homologies. This gives rise to the following commutative
square:

7r2(X) - H2(lim,i C2(XL;)

lim,, H2(XL;)
The top horizontal and the left vertical maps are induced from the corres-
ponding Hurewicz maps, while the right vertical map is defined because each
cycle in the inverse limit of the chain groups is a sequence of cycles in the
respective chain groups. The bottom map is induced by the covering maps. It
is an easy calculation that the right vertical map is an isomorphism, because
everything in sight is 2-dimensional. Finally, it can be shown directly that
the lower horizontal map is injective. This finishes the second proof.

A subgroup L of G that is minimal such that X is L-Cockcroft is called a
Cockcroft threshold of X. (The terminology was suggested by W. Bogley.)
The above theorem says nothing of uniqueness; if the Cockcroft threshold
is unique, then it must be normal. As noted in the introduction, S. Pride
[Pr922] has constructed examples for which the Cockcroft thresholds are not
unique. If the Cockcroft threshold of X is 71(X) itself, we say that X is ab-
solutely Cockcroft. Examples of absolutely Cockcroft 2-complexes are spines
of aspherical, closed, orientable 3-manifolds [GiHo92].

Both proofs show that if we restrict ourselves to normal subgroups, then there
exists minimal normal subgroups that are L-Cockcroft. As was observed in
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the introduction, the first proof may be modified to show that the left L-
identity property (as well as the right L-identity property) admits threshold
subgroups. The second proof shows that if we restrict ourselves to the (non-
empty) family {L} of (resp. normal) subgroups of G for which H2(XL) = 0,
then this family also admits (resp. normal) minimal subgroups L having
the property that H2(XL) = 0. We call such a subgroup of ir1(X) a null -
H2 threshold for X. This yields the following corollary, which generalizes a
theorem of R. Strebel [St74] on E-groups. Note that this result is related to
Proposition 2.4 of [Ge83].

Corollary 4.7 Let X be a 2-complex. If L is a null - H2 threshold for X,
then H1(L) is a torsion abelian group, H2(L) = 0, and, if L is a normal
subgroup, then the cohomological dimension cdQG/L of GIL over Q, the
rationals, is < 2.

Proof: Because H2(XL) = 0, it follows that H2(L) = 0. We factor H1(L) as
follows:

0 --+T(H1(L)) -* II (L) -+ H1(L)/T(H1(L)) -* 0,

where T(H1(L)) is the torsion subgroup of H1(L) and H1(L)/T(H1(L)) is
torsion free. Because H1(L)/T(H1(L)) is a torsion free abelian group, it is a
D-group, in the sense of Strebel [St74], and, if non-trivial, we would have (by
the properties of D-groups) that H2(Xw) = 0 for some subgroup W strictly
contained in L. This is not possible by the minimality of L.

Finally, one sees from the above data that the chain complex C. (X) tensored
with Q

0->Q®C2(X)-*Q®C1(X)->Q®CO (X)-*Q-*0

is exact.



Chapter V

Calculating Generators of 112

W. A. Bogley and S. J. Pride

This article discusses combinatorial geometric techniques that determine ex-
plicit generators for the second homotopy module of a 2-complex in terms of
its cell structure. Applications of the techniques are also presented. The dis-
cussion focuses on the theory of pictures. Pictures have been used for many
purposes; we shall be concerned only with their application to 1r2 calculations.

There are three sections, each of which is divided into several subsections. The
first section provides an overview of the theory of pictures from a homotopy-
theoretic perspective. The second section deals with generalities related to
the generation of 1r2. Some proofs are included in these first two sections,
and there are several exercises. The third section is devoted to a summary
description without proofs of various calculations and applications that have
been obtained in the study of 7r2.

This paper may be taken as a companion and sequel to [Pr91], where pictures
are treated within the purely combinatorial context of identity sequences.

1 The Theory of Pictures

As is customary, 2-complexes will be specified by means of group presenta-
tions. Let P = (x I r) be a presentation for a group G. Thus, G = F/N
where F is the free group with basis x and N is the normal closure in F of the
set r of (not necessarily reduced) words in x U x-1. We allow the occurrence
of trivial and repeated relators r E r, so r should be treated as an indexed
set of words. We will say that two words u and v in x U x-1 are identically
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equal if they represent the same element in the free semigroup on x U x-1.

The words u and v are freely equal if they represent the same element of F.

The cellular model of P is the 2-complex Ky that has a single 0-cell, one 1-cell
for each generator x E x and one 2-cell for each relator. An orientation of the
cells in the one-skeleton KPi determines an isomorphism ir1KP) = F. The
2-cell2-cell corresponding to a relator r E r is attached along a based loop
in the one-skeleton that spells the word r. The inclusion KP1i C K9 induces
a surjection F -+ 7r1Kp with kernel N. In particular, ir1Kp is canonically
isomorphic to G, and so 7r2KP is a left ZG-module under the homotopy action
of 7r1Kp. We are interested in determining ZG-module generators of 7r2Kp
in terms of the presentation P. The 0-cell of Kp will be used as basepoint
for all homotopy groups, and we will often write ir2P for .7r2Kp.

1.1 Pictures

Pictures were introduced in [Ig791i Ro79]. There are many references for the
basic theory, including [BrHu82, BoPr92, CoHu82, DuHo921, DuHo922, Fe83,
Ho89, Ho90, Hu81, Ig791i Ig792, Pr91, Ro79, Wa80]. In this section, we review
without proofs those aspects of the theory that pertain to -7r2 calculations.

A picture P is a finite collection of pairwise disjoint closed discs A1i . . . , Om in
a closed disc D2, together with a finite collection of pairwise disjoint compact
one-manifolds or,. .. , an properly embedded in D2 - Ui int&i (where "int"
denotes interior). By the discs of P we mean the discs A1, . . . , Om and not the
ambient disc D2; a1i ... , an, are the arcs of P. An arc can be either a circle or
an interval. The boundary 0D2 will be denoted OP. The corners of a disc A
of P are the closures of the connected components of OA- U3 ap The regions
of P are the closures of the connected components of D2 - (Ui Di U U3 a3)
The components of P are the connected components of Ui Di U U; aj; P is
connected if it has at most one component. The picture P is spherical if it
has at least one disc and no are of P meets OP.

One can think of a spherical picture P as being supported on the two-sphere
simply by identifying OP to a point. When P is connected, a tessellation
of S2 is then obtained by shrinking each disc of P to a vertex. The discs
(resp. arcs, regions) of P correspond to the vertices (resp. edges, faces) of
the tessellation. The geometry of the sphere therefore restricts the structure
of connected spherical pictures as follows. An angle function on a picture P
is a real-valued function 0 on the set of corners of P. Associated to 0 is a
curvature function ry defined on the discs A of P by

7(L) = 2ir - E 9(c)
cCao
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and on the regions F of P by

y(F) =27r- E (7r-9(c)).
ccaF

In both of these sums, c denotes a corner. Noting that P has twice as many
corners as arcs, an Euler characteristic count reveals that

>'Y(A) + E y(F) = 2irX(S2) = 47r,
A F

where the sums are taken over all discs A and regions F of P. The following
result is an immediate consequence.

Lemma 1.1 For any angle function on any connected spherical picture, some
disc or region has positive curvature. 0

The real number 8(c) is thought of as the radian angle measure of the corner
c. A picture P is flat at a disc A if the sum of the angles of all corners of A is
exactly 21r, which is to say that y(A) = 0. A region F containing d corners is
positively curved (that is, y(F) > 0) if the sum of the angle measures of the
corners in F is greater than (d - 2)7r.

There are other ways to formulate curvature. One can exchange the roles
of the discs and regions in the definition of the curvature function. This
simply amounts to a consideration of the dual tessellation of the sphere.
One can also replace the constant 7r by any positive real number; popular
choices for this are 1 and 180. None of these variations provides information
beyond that which is contained in Lemma 1.1. Curvature considerations
appear in [Ed91, Ho89, Ho90, DuHo921, DuHo922], among many others. The
following exercise is fundamental to small cancellation theory [Ly66, LySc77],
and indicates some basic restrictions on the structure of connected spherical
pictures.

Exercise 1.2 Show that if the boundary of every region (resp. disc) of a
connected spherical picture contains at least p (resp. q) corners, then 1/p +
1/q > 1/2. Prove this in two ways, first by assigning angles so that discs are
flat, and then again by assigning angles so that regions are flat.

Assume that a group presentation P = (x I r) is given. Let P be a picture,
and fix an orientation of the ambient disc, thereby determining a sense of
positive rotation (e.g. clockwise). Assume that the discs and arcs of P are
labeled by elements of P as follows.
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Each are of P is equipped with a normal orientation (indicated by an
arrow transverse to the arc), and is labeled by an element of x U x-1.

Each disc A of P is equipped with a sign e(A) = ±1 and is labeled by
a relator R(O) E r.

For a corner c in a disc A of P, W(c) denotes the word in x U x-1 obtained
by reading in order the (signed) labels on the arcs that are encountered in a
walk around aO in the positive direction, beginning and ending at an interior
point of c. The oriented and labeled picture P is a picture over P if:

For each corner c in each disc A of P, W (c) is identically equal to a
cyclic permutation of R(A)E(°).

Note that if no relator of P is a cyclic permutation of its inverse, nor of
any other relator or its inverse, then the labelings R(A) and signs e(O) are
actually determined by the labelings and normal orientations on the arcs of
P. Examples are displayed in Figure 1.

(a) nonspherical (b) spherical

Figure V.1. P = (x, y I r, s, t); r = x4, s = y2, t = (xy)2

A corner c is a basic corner of the ambient disc A of P if W (c) is identically
equal to R(A)E(°). When R(A) is nonempty, R(O) is identically equal to a
unique word of the form QP where p > 1 and Q is not a proper power; Q is
the root of R(O) and p is the period. The disc A then has exactly p basic
corners.

A picture P over P becomes a based picture over P when it is equipped with
basepoints as follows.
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Each disc A has one basepoint, which is a selected point in the interior
of a basic corner of A.

P has a global basepoint, which is a selected point in 8P that does not
lie on any are of P.

Figure 2 shows three based spherical pictures that are all supported by the
same spherical picture over P = (x I x4).

(a) (b) (c)

Figure V.2. Based pictures over P = (x I x4)

Let P be a based picture over P. The boundary label on P is the word
W(P) obtained by reading in order the (signed) labels on the arcs of P that
are encountered in a walk around OP in the positive direction, beginning and
ending at the global basepoint. In Figure 1(a), if we place the global basepoint
in the "southwest" region of the picture, the boundary label is x2yx-2y-1 =

[x2, y]. Alteration of the global basepoint of P or of the orientation of the
ambient disc changes the boundary label of P only up to cyclic permutation
and inversion.

A path 3 in P that does not meet the interior of any disc of P will be called
transverse if (i) whenever ,Q meets aP or a disc of P, it does so only in
its endpoints, (ii) no endpoint of ,3 touches any arc, and (iii) 0 meets the
arcs in just finitely many transverse intersections. A traverse of an oriented
transverse path Q determines a labeling word W(,3) in the alphabet x U x-1.

When a transverse path,3 in P is actually an embedded circle, then it encloses
a subpicture B of P. This subpicture consists of the discs and (portions of)
arcs that are separated from aP by ,13. When P is spherical, the complement
of B in P is defined as follows. Delete the interior of B to form an oriented
annulus. Identification of OP to a point produces an oriented disc that has
boundary /3, and which supports a new picture over P. The complement of B
in P is obtained from this new picture by a planar reflection. The complement
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has the same boundary label as B and its discs are those of P - B, taken
with opposite signs. See Figure 3.

(a) P (b) B (c) complement of B in P

Figure V.3. Complement

1.2 Homotopy theory of pictures

Let K = K9 be the cellular model of P = (x r). Each based picture P over
P determines a map fp : (D2, aD2) -+ (K, K(1)) of based pairs as follows.
Thicken each arc a of P to a product a x D1 in P so that no thickened are
meets any basepoint of P and so that each slice a x {z}(z E D1) is properly
embedded parallel to a. The orientation and labeling on a show how to
collapse a x D' onto D' by the projection and then map D1 characteristically
onto a 1-cell of K. The basepoint, orientation and labeling on each disc A
determine a based characteristic mapping of A onto a 2-cell of K. The
remaining material in D2 is mapped to the 0-cell of K. The resulting map
fp is continuous since P is a picture over P, and is well-defined up to based
homotopy of pairs. Further, the homotopy class of fp is unchanged by isotopic
deformations of D2.

The homotopy class of P is the element [fp] E ir2(K, K(1)). In case P is spher-
ical, the map fp canonically induces a based spherical map fp : S2 -4 K,
and we think of [fp] as an element of 7r2P = rr2K. The simplicial techniques
in Chapter II, §1, of this volume serve to establish the following result, which
can be traced to [Wh411]. See also [Fe83, Hu81, Si80].

Theorem 1.3 Every element of ir2(K, KM) has the form [ fp] for some based
picture over P. Every element of ir2P has the form [ fp] for some based
spherical picture P over P.
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For a nonspherical picture P over P, varying choices of global basepoint
can change the homotopy class of P only up to the homotopy action by an
element of F = ir1K(1). In case P has relators with period greater than one,
the map fp depends intrinsically on the choice of disc basepoints. Consider
the three based spherical pictures in Figure 2. Each of these gives rise to a
lifted spherical map fp : S2 -+ K to the universal covering complex of K. In
Figure 2(a), the map fp (and hence fp) "folds" the two discs of P together
mirrorwise across an equator of S2, and then maps these identified discs to
a single 2-cell of K. In particular, one finds that [ fp] = 0 in 7r2K = H2K.
On the other hand, the based pictures in Figures 2(b) and (c) determine
homotopically nontrivial spherical maps. For each of these, the lifted map fp
carries the two discs of P to distinct 2-cells of K.

There are well-known alternative procedures for producing homotopy ele-
ments from based pictures. To each based (spherical) picture over P is as-
sociated the Peiffer equivalence class of an (identity) sequence over P. A
homotopy class in ir2 (K, KM) then arises from Whitehead's description of
that group as a free crossed F-module. (See Chapters II and IV of this vol-
ume.) From a based picture one can read off homological chains in C2K and in
C2K, giving "pictorial" views of the Hurewicz homomorphisms 7r2(K, K(1)) -3
H2(K, K(1)) and ir2(K, KM) -> H2(K, KM1)). For spherical pictures, these as-
sociated chains are actually cycles, and determine the isomorphism ir2K -+
H2K and the homomorphism ir2K -* H2K. As an example, the homotopy
classes arising from the pictures in Figures 2(b) and (c) are easily seen to be
distinct upon consideration of the associated cycles in C2K = H2(K, K'>).
While these perspectives are very useful, we shall not pursue them here. See
[BrHu82, Fe83, Pr91, Ra83] for further details.

The algebraic operations in second homotopy groups are easily visualized
in terms of pictures. Let P and Q be based pictures over P, represented
schematically in Figure 4.

Figure V.4. P and Q
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Two new pictures P Q and P-1 are constructed as in Figure 5.

(a) P Q

Figure V.S. Products and inverses

(b) P-1

Thus P Q is a certain union of P and Q and P-1 is a mirror image of P
obtained by a planar reflection and by changing the signs on all discs of P. For
spherical P and Q, these pictures will be denoted P + Q and -P, respectively.
The point is that [fp.q] = [fp] [fq] and [fp_1] = [fp]-' in ir2(K, KM), with
analogous formulae holding in the (additive abelian) group 7r2K for spherical
P and Q. The homotopy boundary of [fp] under ir2(K,KM')) -+ fr1KM = F
is determined by the boundary label W(P). For a word u in x U x'', the
associated element of F acts on elements of ir2(K, KM), while the associated
element of G = F/N acts on elements of 7r2K. Representative pictures for
these actions are denoted u P, and are displayed in Figure 6 (for nonspherical
P and spherical R).

(a) u P

Figure V.6. Actions

(b) u R

If a word u in x U x 1 represents an element in the normal closure N of r in
F, then it is easy to construct a based picture over P = (x I r) with boundary
label u. There is the following pictorial version of the "van Kampen lemma"
[vK33][BrHu82, p.190][LySc77, V.1.1,V.1.2].
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Theorem 1.4 A word u in x U x-1 represents an element of N if and only
if there is a based picture over P with boundary label u. If ,Q and -y are
oriented transverse paths with the same endpoints in a picture P over P,
then W(O)N = W(ry)N.

This result can be proved by noting that each loop in P lifts to a loop in
the universal cover k, and so determines an element of N. As an example,
the picture in Figure 1(a) shows that x2 determines a central element in the
group presented by P = (x, y I x4, y2, (xy)2).

Certain configurations in a based picture contribute nothing to the homotopy
class. A floating are in a based picture P is an arc of P that separates the
ambient disc into two components, one of which contains the global basepoint
of P and all remaining arcs and discs of P. A folding pair in P is a connected
spherical subpicture of P that contains exactly two discs such that (i) the two
discs are labeled by the same relator and have opposite signs, (ii) the base-
points of the discs lie in the same region, and (iii) each arc in the subpicture
has an endpoint on each disc. The picture in Figure 2(a) is a folding pair,
but those in Figures 2(b) and (c) are not.

Let X be a set of based spherical pictures over P. By an X-picture we mean
either a picture P from X or its mirror image -P. The ZG-submodule of
ir2P generated by the homotopy classes [fp](P E X) will be denoted J(X).
We say that X generates ir2P if J(X) = ir2P.

The following operations can be applied to based pictures over P.

BRIDGE: Bridge move; see Figure 7.

FLOAT: Insert or delete a floating arc.

FOLD: Insert of delete a folding pair.

REPLACE(X): Replace a subpicture of a given picture by the complement
of that subpicture in an X-picture.

Txe

Figure V.7. Bridge move



166 Bogley/Pride: V. GENERATORS OF n2

The first three of these operations have no effect on homotopy classes of
based pictures; suitable homotopies are described in [Fe83, pp. 56-59][Hu81,
Proposition 3]. We shall say that based pictures P and Q are equivalent if
P can be transformed into Q (up to planar isotopy) by a finite sequence of
operations BRIDGE, FLOAT, FOLD. Based spherical pictures P and Q are
X- equivalent if P can be transformed into Q (up to planar isotopy) by a finite
sequence of operations BRIDGE, FLOAT, FOLD, REPLACE(X).

The operation REPLACE has the following effect. Suppose that P1 and P2
are based spherical pictures over P, each of which contains as a subpicture
an isomorphic copy of a picture B. (While B itself is a based picture over
P, the boundary and selected global basepoint of B are not actually part of
P1 or P2.) For i = 1, 2, let 3i be a transverse path in Pi from the global
basepoint of Pi to that of B. Let R be the result when the subpicture B of
P1 is replaced by the complement of B in P2.

Lemma 1.5 In ir2P,

[fR] = [fp1] - W(/31)W(,32)-1[fP2]

In particular, if P2 is an X -picture, then [fR] - [fp, ] E J(X) .

Proof: A sequence of bridge moves applied to W(,Q2)-1 P2 yields a picture
P2 containing B, and where the global basepoint of B is "exposed", lying in
the boundary region of P2. See Figure 8.

(a) P2 (b) W(N) -' - P2 (c) P2'

Figure V.8. Exposed basepoint

Let Pi be the picture obtained from P1 by inserting a copy of -P2 so that
the global basepoint of -P2 is adjacent to that of the subpicture B of P1. A
sequence of bridge moves "around" the inserted material yields the picture
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(a) P1' (b)

Pi + W(/31) ' (-Pz), showing that [fp,] _ [.fps] - W()31)W(,32)-1[fp2]. See
Figure 9.

On the other hand, the oppositely oriented and adjacent copies of B in Pi
can be "cancelled" by a sequence of bridge moves and deletions of folding
pairs. The resulting picture is exactly R, and so [fps] = [fR].

Theorem 1.6 Let P and Q be based pictures over P.

1. [fp] = [fQ] in ir2(K(P), Kim)) if and only if P and Q are equivalent.

2. For spherical P and Q, [fp] - [fQ] E J(X) in ir2P if and only if P and
Q are X -equivalent.

A homotopy-theoretic proof of 1 is outlined in [Hu81, Proposition 3]. For a
combinatorial proof see [Pr91, Theorem 2.5*]. This result implies 2 in the case
where X = 0. Note that the operation REPLACE(X) includes the following
operation.

INSERT(X): Insert or delete an X-picture.

With 1.5, the result 2 follows from 1 and the proof of [Pr91, Theorem 2.6].

2 Generation Of LI2

2.1 Asphericity

The 2-complex Ky is aspherical (i.e., has contractible universal covering) if
and only if 7r2Ky = 0. More generally, KP (or rather P) is said to be com-
binatorially aspherical (CA) if 7r2Kp = 7r2P is generated by the set of based
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spherical pictures over P that contain exactly two discs. (Such presentations
are also called aspherical in [Hu79, Identity Theorem and Theorem 1].) As a
fundamental example, the Simple Identity Theorem of R. C. Lyndon [Ly50]
implies that if the relator of a one-relator presentation P is not freely trivial,
then P is (CA).

Note that if P is (CA), then every spherical picture over P contains an even
number of discs. In particular, no relator of P is freely trivial, for such a
relator gives rise to a spherical picture over P with just one disc. In general,
if a spherical picture over P contains just two discs O1 and O2i then the
relator label R(z1) is freely conjugate to R(O2)}l. Consider the following
Relator Hypothesis for P.

RH: No relator of P is freely trivial, nor is a conjugate of any other relator
or its inverse.

It is clear that if KP is aspherical, then P is (CA). For the converse, KP is
aspherical if and only if (i) P satisfies the Relator Hypothesis, (ii) each relator
of 'P has period one, and (iii) P is (CA) (see [Hu81, Proposition 5]).

Discarding freely trivial and repeated relators (up to conjugacy), any presen-
tation P = (x I r) contains a subpresentation Po = (x I ro) where Po satisfies
the Relator Hypothesis. Further, there is a homotopy equivalence

KP ^-' K(Po) V V S2.
r-r0

In particular, ir1K(Po) '= 7r1KP - G and

ir2Kp = ir2K(Po) ®®ZG.
r-ro

A basis for the free summand ®r-ro ZG is easily given in terms of based
spherical pictures over P having just one or two discs. In considering the
structure of ir2, there is therefore no loss of generality if one works only with
presentations that satisfy the Relator Hypothesis. In addition, one may also
assume that each relator is cyclically reduced, as cyclic reduction of relators
of a presentation P does not affect the homotopy type of K.

We remark that covering space topology naturally leads to the consideration
of 2-complexes having more that just a single 0-cell, and of presentations
that contain repeated relators. For example, the canonical cell structure on
the universal cover of the model of (x I x4) has four 0-cells, and this covering
space is homeomorphic to the model of (x I x, x, x, x).
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A dipole in a picture over P consists of an are which meets two corners cl, c2
in distinct discs such that (i) the two discs are labeled by the same relator
and have opposite signs, (ii) cl and c2 lie in the same region of the picture,
and (iii) W(ci) = W(c2)-1. See Figure 10.

Figure V.10. Dipole

By a complete dipole over P, we mean a connected based spherical picture over
P that contains just two discs, and where each arc of the picture constitutes
a dipole. Note that a complete dipole is just a folding pair except possibly
with a "twist", in that the disc basepoints need not lie in the same region
(unless the relator that labels the two discs has period one). All the pictures
of Figure 2 are complete dipoles. A complete dipole will be called primitive
if the relator labeling the discs has root Q and period p > 1, and there is a
transverse path joining the disc basepoints with label Qf, where gcd(f, p) = 1.
In Figure 2, only (b) is a primitive dipole. The following lemma shows that,
modulo primitive dipoles, one need not be concerned with choices of disc
basepoints.

Lemma 2.1 Suppose that X contains a primitive dipole for each proper
power relator in P. If a based spherical picture P over P is obtained from Q
simply by changing disc basepoints, then [fp] - [fQ] E J(X)-

Proof. Using the operation REPLACE(X), primitive dipoles can be used to
alter disc basepoints in any prescribed manner.

Combinatorially aspherical presentations that satisfy the Relator Hypothesis
are called almost aspherical in [GuRa8l], and are said to have the Identity
Property in [HoSc79]. They are precisely the presentations P for which 7r2P
is generated by primitive dipoles. Combinatorial asphericity of a presentation
has strong consequences for the group presented. Outstandingly, the maximal
finite subgroups are cyclic and are determined (up to conjugacy) by the roots
of the relators [Hu79]. In particular, no non-cyclic finite group admits a (CA)
presentation. An extensive catalogue of (CA) presentations appears in [Pr91].
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We will say that P is combinatorially reducible (CR) if each connected spheri-
cal picture over P contains a dipole. Note that if P is (CR) then each spherical
picture over P has a dipole, and that P satisfies the Relator Hypothesis. Fur-
ther, if a picture P contains a dipole, then a series of bridge moves splits off
a complete dipole. It follows that (CR) (CA). An advantage of the (CR)
property is that it can often be detected using a simple combinatorial test.
The power of this test lies in the fact that its application does not require
the consideration of any pictures, but relies only on the structure of a certain
graph that is easily read off P.

The star graph of P = (x I r) is the geometric graph Pst with vertex set xUx-1
and with one geometric edge with endpoints xE and y_a for each cyclic syllable
xEy6 of the root of each relator. For example, for n > 1, (x I xn)st has two
vertices connected by a single edge. Closely related is the link graph Lk P; it
has an edge for each cyclic syllable of each relator. In the link graph, proper
power relators give rise to multiple parallel edges. The link graph of (x I x")
has two vertices joined by n edges. Topologically, the link is the boundary
of a basic open neighborhood of the 0-cell in K2. See [Pr88, Pr91, Si81] for
examples and alternate descriptions of link and star graphs.

The star graph is related to pictures as follows. Let c be a corner of a disc
A in a picture P over P. Writing W(c)E( ) = y6VxE, the corner c determines
the cyclic syllable xey6 of (the root of) R(A), and hence determines an edge
of P. If F is a region of P, then traversing a component of aF that does not
meet aP determines a sequence of corners, which in turn defines a cycle (i.e.,
a closed loop) in P. A spherical picture P has no dipoles if and only if all
cycles arising this way are cyclically reduced (i.e. contain no backtracking).

A weight function on Ps` is a real-valued function on the edges of Pst. Note
that each syllable of each relator acquires a weight; the weight on a path in Pst
is the sum of the weights of its constituent edges, counted with multiplicities
and without regard to the direction of traversal. The following weight test
evolved from the coloring test of A. Sieradski [Si81] through the work of S.
Gersten [Ge871] and S. Pride [Pr88].

Theorem 2.2 Suppose that Pst admits a weight function such that the fol-
lowing two conditions hold.

1. The sum of the weights of the syllables of the root of any relator is not
more than n - 2/p, where p is the period of the relator and n is the
length of the root.

2. Each cyclically reduced loop in Pst has weight at least two.
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Then P is (CR).

Proof: Let P be a connected spherical picture over P. The dual picture
P* has a single disc in the interior of each region of P, and has the same
number of arcs as P. Each arc of P* meets exactly one arc of P in exactly
one transverse intersection, and P* is a connected spherical picture. There
is an obvious bijective correspondence between the corners of P* and the
corners of P. To each corner of P* there is therefore associated an edge of
P$t, and so we may define an angle function on P* by letting the angle on
a corner of P* be the product of it times the weight on the corresponding
edge of Pst. The condition 1 implies that each region of P* is non-positively
curved. If we suppose that P has no dipoles, then the condition 2 implies
that each disc of P* is non-positively curved, contrary to Lemma 1.1.

A refined version of the weight test is given in the cycle test of G. Huck
and S. Rosebrock [HuRo92]. Applications to decision problems are discussed
in Chapter VI of this volume. Huck has recently devised another form of
the weight test (unpublished), in which the condition 2 of the weight test is
weakened to require only that each simple cycle in Pst has weight at least two.
(A cycle in a graph is simple if it touches each vertex and edge of the graph at
most once.) Presentations satisfying Huck's weight test are (CA), and are in
fact diagrammatically aspherical (DA) in the sense of [ChCoHu81, CoHu82],
but they need not be (CR). For example, the presentations (x I xx-lx) and
(x, y I x2y-1, xy 1) both satisfy Huck's weight test, and yet each admits a
based spherical picture without dipoles. The (DA) property is characterized
in terms of pictures in [CoHu82, Lemma 6] and in [Hu81, Proposition 8].
Diagrammatically aspherical presentations are called "aspherical" in [LySc77,
p. 156] and in [Si80], where a homotopy-theoretic interpretation of (DA) is
given. For completeness, we record here the fact that (CR) (DA) . (CA),
and that neither of these implications is reversible. See [ChCoHu81, p. 8],
[CoHu82], [Hu79, Note added in proof], [Si80], [Ge871], and Chapter X of this
volume for further discussion.

Finally, a (CR) presentation in which each relator has period one is said to
be diagrammatically reducible (DR). The model of a (DR) presentation is as-
pherical. The (DR) property was first described in [Si81] by Sieradski. A
homotopy-theoretic characterization of (DR) appears in [Ge872]. Applica-
tions of diagrammatic reducibility to the study of equations over groups were
discovered independently by Sieradski (unpublished) and Gersten [Ge871].
At present it is unknown to what extent analogous results on equations over
groups can be proved in the more general setting involving (CR). See also
[Ge86, Ge872] in this regard.
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Exercise 2.3 Use the weight test to show that (x, y, z I x'n' yn' zp', XM2 yn2 zr2 )
is (DR) if mlm2, n1n2 and p1p2 are all negative. What other hypotheses on
the exponents will ensure diagrammatic reducibility?

2.2 A Dehn algorithm for 7r2

A procedure for determining generators of ir2P is the following pictorial ana-
logue of the Dehn algorithm. First, look for a set X of "obvious" based
connected spherical pictures over P. Next, devise a measure p of complex-
ity for based pictures over P. One is free to choose whatever will work,
though the function p should take values in an ordered monoid that has no
strictly decreasing infinite sequence, and should be additive, in that whenever
B is a subpicture with complement B' in a based spherical picture Q, then
p(Q) = p(B) + p(B'). Suppose that such a complexity function has been
selected.

Theorem 2.4 Assume that for each connected based spherical picture P over
P, there is a based spherical picture Po over P such that

1. P and Po are X -equivalent,

2. p(Po) < p(P) and

3. P0 contains a subpicture B such that B is also a subpicture of an X -
picture Q, and such that p(B) > p(B'), where B' is the complement of
B in Q.

Then ir2P is generated by X together with the collection of based spherical
pictures over P having minimal complexity.

(Of course, one hopes that the pictures of minimal complexity are trivial, or
at least are easily described.)

Proof: By Theorem 1.3, each element of 7r2P is of the form [fp] for some (not
necessarily connected) based spherical picture P over P. By considering a
connected component of P, there is a picture P0 satisfying the conditions 1-3
of the theorem. We can replace B by B' and transform P0 into a new picture
P' with smaller complexity. (This is because p is additive.) By Theorem
1.6.2, [fp] - [ fp-] E J(X). Proceeding inductively, we find a based spherical
picture P" where [fp] - [fp""] E J(X) and P" has minimal complexity.

As a simple application of this technique, one can easily show that 7r2P is
generated by the set of all connected based spherical pictures over P: Take
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the complexity of a picture to be the number of components. For a general
example of an additive complexity function on P = (x I r), suppose that f :
x U r -* N is a function with values in the non-negative integers. Each based
picture P over P then acquires a complexity µ(P), given as the following sum
over the discs and arcs of P. Each disc contributes the f-value of its relator
label. Each arc having both endpoints on discs of P contributes the f-value
of its generator label, each arc having one endpoint on a disc of P contributes
half the f-value of its generator label, and each are that does not meet any
disc of P contributes zero. The measure p is then additive. One is interested
in spherical pictures with p = 0, and in subpictures B in X-pictures Q for
which p(B) > p(Q)/2.

To illustrate the method, consider the presentation P = (x, y I r, s, t) for
the dihedral group of order eight, where r = x4, s = y2 and t = (xy)2. Let X
consist of a primitive dipole for each of r, s, t, together with the picture Q of
Figure 1(b), which can be equipped with basepoints in any allowable fashion.
(See Lemma 2.1.) Define f (x) = f (y) = 0, f (r) = 4, f (s) = f (t) = 1, and let
p be the corresponding complexity function. Let P be a spherical picture over
P. If P contains a dipole, then a series of bridge moves splits off a complete
dipole, and so as in the proof of Lemma 2.1, P is X-equivalent to a picture P0
that contains an entire X-picture, and where p(P) = p(Po). Suppose then
that P contains no dipole. It is easy to check that (x, y I s, t) is (CR), and
so P must contain at least one disc A labeled by r. Replacing P by -P if
necessary, we may assume that A has sign +1. Since P has no dipoles, there
is a subpicture of P of the form shown in Figure 11.

Figure V.11. A subpicture

Note that in P, the arc a does not touch the disc A, for otherwise P would
contain a subpicture with boundary label of the form (yxk)ti (k = 0 or -1),
in contradiction to the fact that G is not cyclic. (See Theorem 1.4.) It follows
that P has a subpicture B of the form shown in Figure 12.

Now, µ(B) = 9 and B is also a subpicture of Q, while p(Q) = 16. Since
pictures with zero complexity are homotopically trivial, Theorem 2.4 implies
that X generates ir2P.
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Figure V.12. B

Exercise 2.5 Determine generators of 7r2P where P = (x, y I x yb, (xy)c)
presents the (a, b, c)- triangle group (a, b, c > 2). (Hint: If 1/a+1/b+l/c < 1,
then P is (CR); see [BoGu92, Example 5.4] for help in building pictures when
1/a + 1/b + l/c > 1.)

2.3 Subpresentations

Suppose that {Pi : i E I} is a collection of subpresentations of P, and let
Xi denote the collection of all based spherical pictures over Pi (i E I). We
shall say that a set Y of based spherical pictures over P generates 7r2P over
{Pi : i E I} if Y U UiEJ Xi generates 7r2P. Note that one may equivalently
take Xi to be a set of generators for 1r2Pi (i E I).

The value of this concept is that we can often isolate certain subpresentations
which we know little about, or which in some way are arbitrary; then, relative
to these subpresentations we can often determine a "nice" set of generators of
7r2P. This point of view is very useful when considering the second homotopy
module of "canonical" presentations arising from group constructions. For
example, suppose G = G1 x G2. Choose presentations Pi = (xi I ri) for
Gi (i = 1, 2). Then P = (xl, x2 I r1, r2, x1x2x1 1x21(xi E xi)) is a presentation
of G. Since G1 and G2 are arbitrary, we cannot say anything about generators
of ir2Pi. However, it is not hard to find generators for 7r2P over {Pi, P2}. See
Section 10 below.

We will say that P is (CA) over {Pi : i E I} if 7r2P is generated over {Pi :
i E I} by primitive dipoles. Similarly, P is (A) over {Pi : i E I} if 7r2P
is generated by the empty set over {Pi : i E I}. Note that P is (A) over
{Pi : i E I} if and only if the inclusion-induced map ®iEt7r2Pi -+ ir2P is
surjective. These formulations of (CA) and (A) both imply that no relator of
P - UiEI Pi is a consequence of the other relators of P.

Consider a presentation P = (x I r1, r2, ... , For i = 1, ... , n, let Ri
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be the normal closure of r1 in the free group F with basis x, let Pi = (x I
ri), and let N i = nj#i R3. Set R = jj 1 Ri, G = FIR and Gi = FI Ri.
The family {R1, R2, ... , R.} is said to be independent if Ri fl Ni = [Ri, Ni]
for i = 1,. .. , n. This and related notions have been studied in [Bo91,
DuE1Gi92, Gi93, GuRa8l, Hu81]. For example [DuE1Gi92, GuRa8l, Hu81], if
{R1, R2, ... , R, } is independent, then P is (A) over {Pi : i = 1, ... , n}. The
converse holds in case n = 2. It is shown in [DuElGi92, Theorem 2.1] that
{R1, R2, ... , R,,} is independent if and only if the inclusions Ri -+ R induce
an isomorphism ® 1(ZG ®ZG; H1Ri) -# H1R of (induced) relation modules.

Consider a pair of presentations Q C P having the same set of generating
symbols, say

Q = (x I s) 9 (x I s,r) = P.

In this case, Kp is obtained from K(Q) by attaching 2-cells. We will say
that P is reducible over Q if for each spherical picture over P that is not a
picture over Q, there is a transverse path y joining corners c1, c2 in distinct
discs Al, A2 such that (i) O1 and A2 are labeled by the same relator r E r
and have opposite signs, (ii) W(ci) = W(c2)-1, and (iii) W(y) represents the
identity in the group presented by Q. See Figure 13. This notion compares
closely with [CoHu82, p. 179], [Hu81, Proposition 8] and [Si80, (5)].

Y

Figure V.13. Reducible

Lemma 2.6 If P is reducible over Q, then P is (CA) over Q.

Proof: Let X be a complete set of primitive dipoles over P, and let P be a
spherical picture over P. We show by induction on the number of discs in
P which are labeled by elements of r that P is X-equivalent to a spherical
picture over Q. By hypothesis, P contains a subpicture of the sort depicted
in Figure 13. By (iii), there is a picture A over Q with boundary label W (-Y),
and so there is a spherical picture Q over P as shown in Figure 14.
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Figure V.14. A spherical picture Q

The two discs labeled r in Q support a complete dipole in Q, while the
oppositely oriented copies of A can be cancelled as in the proof of 1.5, so
that [fq] E J(X). The subpicture B of Q enclosed by the loop Q is also a
subpicture of P. Replacing the subpicture B in P by the complement of B
in Q, it follows that P is X-equivalent to a picture having two fewer discs
labeled by elements of r. 0

3 Applications and Results

3.1 Universal group of a family of subgroups

Abels and Holz [AbHo92] have considered the concept of a family of subgroups
of a group being "n-generating". In particular, the 3-generating property is
intimately connected with the second homotopy module. We give an account
of their ideas in terms of pictures.

Let f = {Hi : i E I} be a family of subgroups of a group G. We can consider
the "free product of this family amalgamated along their intersections". This
is a group H = Un Hi together with a homomorphism ¢i : H2 -4 H for each
i E I such that 4iIH;nH; = 4J1H;nH; for each i, j E I, and where H is universal
with this property.

Choose a presentation Pi = (xi I si) for Hi. We thus have an isomorphism
ai : Hi -4 Fi/Ni, where Fi is the free group on xi and Ni is the normal closure
of si in Fi. For any (unordered) pair of elements i, j E I choose a generating
set {ha : A E A{i, j}} of Hi fl H3. For each A E A{i, j}, select a'\ E Fi and
a'.\ E F2 such that ai(ha) = a' Ni and aj(ha) = aaNj. Then
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P=(xi(iEI) I si(iEI),a'=aa(i,j EI,AEA{i,j}))

is a presentation of H. We let r{i,j } = {aa = a- : i, j E I, A E A{i, j}}.

We consider certain "obvious" spherical pictures over P. First, for i E I, let
Xi denote the set of spherical pictures over Pi, and let X1 = UIEI Xi.

Second, for i, j E I, let V be some relation among the generators hA (A E
A{i,j}) ofHinHj, say

V = h al h a ... ha- (A E A{i, j}, E = ±1, =1, ... , n).

Then,
V = (aA, )E' (aa2

)E2 ... (aan )En E Ni

and similarly we have a word V, in a' representing an element of N. By
1.4 there are pictures Di,, Di, over Pi, P; respectively with boundary labels
W(D) _ [ ;-1 and W (D') = V . We obtain a spherical picture Pv over P
as shown in Figure 15.

Figure V.15. P E X2

We let X2 denote the collection of all such pictures Pv for all pairs i, j E I.

Third, for each triple i, j, k E I choose a generating set {h7 : ry E r{i, j, k}}
of HinH; nHk. Each h7 can be written as a word b' (ha(ij)) (A(ij) E A{i, j})
in the generators of Hi n H3. Similarly there are words W 7k(hA(jk)),byi(hA(ki))
representing h,y in the generators of Hj n Hk, Hk n Hi, respectively. Then we
have, for instance, ai(bry (hA( ))) = ai(bki(ha(ki))), and it follows that
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b," (a,1(ij))_ "i = b-k,'(a'(ki))- "i

b'7k(aa(jk))Nj = b7 (a\(ij))Nj
V-,k U.

k(ki)

By 1.4 there are pictures D'
.,

Dy, D7 over Pi, Pj, Pk with clockwise boundary
labels

W(Di = bij ai bki(ai -1
7) 7 ( J(ij))y a(ki))

and similarly for Dj, D7. Also, there are pictures A? (respectively A7 k, A7i)
containing only discs labeled by relators in r{i,j} (respectively r{j,k}, r{k,i}),
and having clockwise boundary labels

W(Aij = bij(a-a(ij))bij (7a'7) 7 a(ij))

and similarly for A7 k, A. We can join these six pictures together to form a
spherical picture P. as shown schematically in Figure 16.

Figure V.16. P E X3

We let X3 denote the collection of all such P7 for all triples i, j, k E I. Finally,
L denotes the submodule of ir2P generated by X1 U X2 U X3.

We now discuss the work of Abels and Holz mentioned earlier. We have the
family f = {Hi : i E I} of subgroups of the group G. Let Al denote the
nerve of the cover of G that consists of all the left cosets of the Hi (i E I) in
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G. Abels and Holz define the family 7i to be n-generating if the simplicial
complex A is (n - 1)-connected, i.e., if the geometric realization of Al has
trivial homotopy groups in dimensions less than n. It turns out that

f is 1-generating Ui Hi generates G (folklore), and

f is 2-generating the natural map H = Len Hi -* G is an isomor-
phism [Be75, So73].

Abels and Holz show that if 7-l is 2-generating, and if we choose a presentation
P for H = Un Hi as above, then

7r2 (AO - ir2(P)/L.

Thus, 7-l is 3-generating if and only if L generates 7r2P.

3.2 Generalized graphs of groups

We consider a much more general concept of graphs of groups than the stan-
dard concept [Se80]. Let r be a directed graph with vertex set v and oriented
edge set e, and for each v E v, e E e, let there be assigned groups G, Ge.
Also, for each oriented edge e E e with initial (resp. terminal) vertex i(e)
(resp. t(e)), let there be assigned subgroups H. < Gi(e) , He < Gt(e) , and an
isomorphism 0e : He -+ He. Finally, suppose that for each e E e there is
chosen a fixed element Se E Gi(e) * Ge * Gt(e) (or be E Gi(e) * Ge if i(e) = t(e)).
We allow be to be trivial; if ee is not trivial, then we require that the first and
last terms of C. (in normal form) belong to Ge.

The fundamental group of the above system defined to be the quotient group
G of the free product *,,ErG, by the elements

hte¢e(h)-lie' (h E He, e E e).

We obtain a presentation for G as follows. Choose a presentation PZ for GZ
for each z E F. For e E e, let {hi,e : i E I (e) } be a set of generators of
He, and for i E I(e) choose words ai,e1 ai,e in the generators of Pi(e), Pt(e)
which represent hi,,,0e(hi,e) respectively; let T. be a word in the generators
of Pi(e) U Pe U Pt(e) which represents Se. A presentation P for G results from
combining all the presentations PZ (z E F) and adding the additional relations

ai,eTeai,eTT i (e E e,i E I(e)).
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Now suppose that

hE2 Er _U "-tl,e'"12,e ... har,e 1

(ij E I (e), Ej = f 1, j = 1, ... , r) is a relation amongst the generators of He.
Then we have a picture Du over Pi(e) with anti-clockwise boundary label

W( Du)-1
E2 aEr= ailEl ,eai2,e ... 2rel

and a picture Du over Pte) with (clockwise) boundary label

W(Du) = aii,ea
Er...atr,e.

A spherical picture Pu over P is then constructed as in Figure 17

Figure V.17. P

Theorem 3.1 ([BaPr]) Suppose that the following two conditions hold.

1. The set of edges e of r for which le is trivial spans a forest in F.

2. For each e E e all the terms of e (in normal form) have infinite order.

Then, the pictures Pu generate 7r2P over {Pz : z E r}. 0

A proof and numerous applications of this result are given in [BaPr]. The
proof relies on a new result due to Klyachko [K192] about graphs on spheres.
We remark that in the setting of Theorem 3.1 one can show that the groups
Gz naturally embed into G [K192].
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3.3 Split extensions

Let K and H be groups and let 0 : K Aut(H) (k H 00 be a homomor-
phism. Consider the split extension G = H x ,K consisting of all pairs hk(h E
H,k E K), where multiplication is defined by (hk)(h'k') = (hok(h'))(kk').
Choose presentations f = (x I s), IC = (y I t) for H and K respectively. If F
is the free group on y, then there is an epimorphism F -* K (y H ky) whose
kernel is the normal closure oft in F. There is the composite homomorphism
z(i* : F -+ Aut(H) and split extension G* = H xO. F. A presentation for G*
is given by

P* = (x,y I s xy-1axyy(x
E x,y E y)).

Here, for x E x, y E y, axy is a selected word on x representing zl>ky (hx), where
hx is the element of H represented by x. A presentation P for G is obtained
by adjoining the relators t to P*.

Now G* is the fundamental group of a (standard) graph of groups, and so
generators of 7r2(P*) can be obtained from 3.1. We will describe a set of
pictures which generate ir2P over P*.

Let t# denote the set of all cyclic permutations of elements of t U t-1 that
end with an element of y (rather than with an element of y-1). Let T E t#,
say T = Uy, and let x E x. Now UayU-lx-1 defines the identity of G*
(since TxT-lx-1 does), so there is a picture BT,x over P* with boundary
label UaxyU-lx-1. We thus obtain a spherical picture PT,.., over P as shown
in Figure 18.

Figure V.18. PT,x

Theorem 3.2 ({BaPr]) The pictures PT,x (T E t#, x E x) generate ir2P
over P*.
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This theorem has recently been used by Lysionok and Pride [LyPr] to describe
the structure of ir2P in terms of modules associated with H and K.

3.4 Iterative constructions

Ol'shanskii [0191] has devised a method for constructing groups with strange
properties by considering certain types of ascending chains of presentations

P0CP1C...

and looking at the group G,,, defined by P, = U°_o Pi. For the chains
considered by 01'shanskii, it turns out that for each i, Pi+1 is reducible over
Pi. Thus P,,. is (CA) over Po (Lemma 3.3).

We describe Ol'shanskii's basic construction; for more details see [0191]. Let
n be a very large (n > 1010) odd integer, and let Po = (x : -). Suppose that
Pi = (x I ri) has been constructed, and let Gi be the group defined by Pi.
We say that a word on x is simple in rank i if it is not conjugate in Gi to a
power of a shorter word, and it is not conjugate in Gi to a power of a root of
a relator in ri. Let ui+l denote a maximal set of words of length i + 1 which
are simple in rank i with the property that if A, B E ui+l and A 54 B, then
A is not conjugate in Gi to Bfl.

Now define a set si+1 as follows. First, we include in si+1 relators of the form
An (A E ui+1) (relators of the first type). Also for each A E ui+l we include
in si+1 a set SA of words of the form

T1 A"' T2An2 ... TkA"k

(relators of the second type). 01'shanskii imposes seven conditions R1-R7
[0191, pp. 271-272] concerning the form of the relators of the second type.

When there are no relators of the second type the conditions R1-R7 are
vacuous and the theory in this case is easier, relying on the geometry of
what Ol'shanskii calls A-maps [0191, Chapter 5]. In this case G,,, is the free
Burnside group on x of exponent n [0191, Theorem 19.7]. When there are
relators of the second type the geometry becomes much more complicated
and one has to analyse what Ol'shanskii calls B-maps [0191, Chapter 7].
The presence of relators of the second type gives considerable flexibility of
construction. In particular, one can impose relators of the second type in
such a way that G,,. is a so-called "Tarski monster" [0191, Theorem 28.1].
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The geometry of A- and B-maps ensures that P;+i is reducible over Pi [0191,
Lemma 18.2, Lemma 25.1], and so P,,. is (CA).

The above can be varied by choosing Po differently. In particular, one can
take PO to be a presentation of a free product of groups or of a hyperbolic
group [0191, Chapter 11].

In connection with free Burnside groups, one should mention the earlier work
of Novikov-Adian [Ad75]. Recently, S. Ivanov [Iv92] and I. G. Lysionok
[Ly92, Ly93] have investigated free Burnside groups of large even exponent.
In particular, Lysionok has determined generators of the second homotopy
module of presentations of these groups. The paper of Rips [Ri82] has simi-
larities with the work of 01'shanskii, though Rips does not consider 7r2.

3.5 The Steinberg group and K3 of a ring

Let A be a ring. The Steinberg group St(A) is the group defined by the
presentation St(A) with generators

xij (a) (i, j E N,i # j, a E A)

and with relations

xij (a)xis (b) = xij (a + b) (all i, j, a, b)

[xij (a), xkI (b)] = 1 (i ¢ 1, j 0 k, all a, b)

[xij (a), xjk(b)I = xik(ab) (i, j, k distinct, all a, b).

There is a homomorphism St(A) -+ GL(A) that maps the generator xij(a)
to the elementary matrix with a in the (i,j)-position. The kernel of this
map is denoted K2(A); it measures the `nonobvious' relations amongst the
elementary matrices over A.

Now Igusa [Ig792] has described certain pictures over the presentation St(A).
Igusa's pictures are valid for each ring A, and so can be regarded as `obvi-
ous'. These pictures are exhibited explicitly in [Wa80]. (Note however that
a different convention is used for drawing pictures there.) Igusa has proved
that if M is the submodule of ir2St(A) that is generated by these `obvious'
pictures, then 7r2St(A)/M is isomorphic to K3(A). Thus K3(A) measures the
`nonobvious' pictures over St(A).



184 Bogley/Pride: V. GENERATORS OF 112

3.6 Presentations defined using simplicial complexes

Let 1C = (v, E) be an abstract simplicial complex. For each vertex v E V let
x be a collection of generating symbols. An element of x, will be said to be
of type v. For each simplex a E E let

Xa = U Xv
vEa

and let ra be a set of cyclically reduced words on xa, where each element of
ra involves at least one generator of every type v E a. We allow ra to be
empty; a is essential if ra is non-empty. We let

Pa = (xo : U r,.)
r-<a

(xa : U rr)
r-<a

and let Go, Gs be the groups defined by Pa, Po respectively. Thus Ga is the
"group corresponding to the simplex a" and Go is the "group corresponding
to the proper faces of v". We have the natural epimorphism G" -> Go. We
let is denote the set of all words on xa which represent nontrivial elements
in the kernel of this epimorphism.

If W is a word on xa then a k-factorization of W is an expression of W as a
product W1W2...Wk where Wa (1 < A < k) does not involve generators of
every type v E or (that is, WA is a word on Xaa for some proper face as of a).
We will say that Pa has property-Bk if no element of is has a k-factorization.
Roughly speaking, this gives a measure of the amount of collapse in passing
from Ga to Ga-the larger the k, the less the collapse.

Consider the following graph r: the vertices are the essential simplices of K;
there is an edge joining a, T if or fl r is nonempty and is a proper face of both
a and T. We will say that the triangle condition holds if r has no triangles.

Theorem 3.3 Let P = (Xv (v E v) ` ra (a E E)), and let G be the group
defined by P. Suppose that one of the following two conditions holds.

(I) Each Pa has property B5.

(II) Each Pa has property B3 and the triangle condition holds.

Then,
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1. the natural mappings G, -+ G are injective for each o E E, and

2. P is (CA) over {Po : a is a maximal simplex in K}.

The proof of 1 in the case when each x is a singleton is due to Edjvet [Ed88,
Theorem 1]; the proof can easily be adapted to the more general situation
considered here. The proof of 2 is an unpublished result of the second author.
(A proof of 2 in the case when 1C is one-dimensional can be found in [Pr921].)

The above theorem had its origins in the papers [Pr87, PrSt89, PrSt90, Pr9211
which considered the case when K is one-dimensional. In this case there are
many nice examples (for example, certain Coxeter groups [PrSt9O]) when the
conditions (I) and (II) are easily verified. For higher dimensional situations
it is difficult to verify the conditions (I) and (II), and it would be of interest
to find nice examples.

3.7 One-relator products

Let H1, H2 be two nontrivial groups, and let R be a cyclically reduced element
of the free product H1 * H2 of free product length at least two. The quotient
G of H1 * H2 by the normal closure of R is called a one-relator product of
H1 and H2, which we denote by (H1, H2; R). If we choose presentations
Q1 = (x1 I s1), Q2 = (x2 I s2) for H1, H2 respectively, then we obtain a
presentation

P = (xl, x2 I Si, s2, R)

for G = (Hl, H2i R), where f? is a word on x1 U x2 representing R.

Two major issues that have been addressed for one-relator products are the
following.

1. When are the natural maps H1, H2 -4 (H1, H2; R) injective?

2. Determine a "nice" set of generators of 7r2P over {Q1, Q2}.

For the most part it suffices to restrict discussion to the case when one of the
factors is infinite cyclic. In fact, in the above setting, let H = H1 * H2, and
let C be an infinite cyclic group generated by t. There is an automorphism
0 of H * C given by

h1 H h1 (h1 E Hl), h2 H th2t-1 (h2 E H2), t t.
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Let Ro be the image of R under 0, and let Go = (H, C; Ro). Let ¢ : H -+
G, 40 : H * C -* Go be the natural surjections. Then there is an isomorphism
0* : G * C -+ Go such that 000 = id). It follows from this that if 00
is injective on H, then 0 is injective on each of H1 and H2. Moreover, from
the presentation P of G we can obtain a presentation

PO = (x1,x2,t I S1,S2,R0)

of Go, where R0 is obtained from R by replacing each symbol x21 in R0 by
tx21t-1 for all x2 E x2i and then cyclically reducing the result. Suppose we
have determined a set X0 of spherical pictures over PO that generate ir2P over
{Q1, Q2}. Let X be the set of pictures over P obtained from the pictures
in X0 by erasing all arcs labeled t}1. Then X generates 7r2P over {Q1, Q2}.
To prove this, one converts a given spherical picture P over P to a spherical
picture Po over PO using the process described in [BoPr92, proof of Lemma
3.3]. This process has the property that upon erasing all arcs of Po labeled by
t, one returns to P. Let Y be the set of all spherical pictures over Q, (i = 1, 2).
Since X0 generates ir2P0 over {Q1i Q2}, Po is (X0UY1 U Y2)-equivalent to the
empty picture. Erasing all arcs labeled t in this transformation, one finds an
(X U Y1 U Y2)-equivalence from P to the empty picture.

From now on we will consider a one-relator product G = (H, t : R) where H
is a nontrivial group and t generates an infinite cyclic group. We choose a
presentation Q = (x I s) for H, and obtain a presentation P = (x, t

I
s, R)

for G. We will then be concerned with the following two issues.

1. When is the natural map H -* G injective?

2. Find a "nice" set of generators of 7r2P over Q.

The main results in this direction have been obtained under hypotheses on
either (i) H, or (ii) the "shape" of R. As regards (i), it has been shown
that if H is locally indicable, then H -* G is injective [BrS80, Ge83, Ho812,
Kr85, Sh81] and P is (CA) over Q [Ho84]. As regards (ii), most work has
been done when R is a proper power: R = S" (n > 1). (Ordinary one-relator
group theory is easier when the relator is a proper power, so one would expect
a similar phenomenon in the relative case considered here.) The root S is said
to be exceptional if some cyclic permutation of S has the form

UhU-'k

where h, k are elements of H of finite orders p, q, and
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1/p+1/q+1/n> 1.

If S is exceptional, then for each distinct cyclic permutation of S of the above
form, there is an "obvious" spherical picture over P (see [DuE1Gi92, Ho89,
Ho90]) and we can consider the set X of all these spherical pictures, together
with a primitive dipole. If S is not exceptional, then X contains only the
primitive dipole.

Theorem 3.4 ([Ho89, Ho90]) If n > 4, then H -> G is injective and ir2P
is generated by X over Q.

This theorem is not too difficult to prove when n > 6 using small cancellation
theory (see [CoPe85, GoSh86, Ly66]). When n = 4, 5, the proof is much more
difficult and is due to Howie [Ho89, Ho90]. Some partial results for n = 3
have been obtained by Duncan and Howie [DuHo921].

The question of what happens when n = 2 is far from clear. Juhasz (un-
published) has claimed that if n = 2 and H is torsion-free, then H -* G is
injective and P is (CA) over Q. Duncan and Howie [DuHo922] have pointed
out that there are examples with n = 2 and S having only one exceptional
form (so that X consists of a single picture), but where ir2P is not gen-
erated by X over Q. For example, take either (i) H = (a, b : a2, b3) and
S = (atbt-1)4(atb2t-1)2 or (ii) H = (a, b : a3, b3) and S = atbt-1atb2t-1.

For relators that are not proper powers, one can try to get an insight into this
case by considering relators of small t-length. The first case of real interest
is t-length three, so that up to cyclic permutation, R has the form thlth2t'h3
where hi E H and e = ±1. When e = 1 (resp. e = -1), then it follows from
a theorem of Levin [Le62] (resp. Howie [Ho831]) that H - G is injective. As
regards ir2P, we have the following results.

Theorem 3.5 [BoPr92]) Suppose that R = thlth2th3 where h1, h2, h3 E H
are not all equal. Then, P is (A) over Q if and only if neither of the following
two conditions holds.

1. For each i = 1, 2, 3, has finite order pi (subscripts mod 3) and
1/p1 + 1/p2 + 1/p3 > 1, or

2. there exist integers j E {1, 2, 3}, p > 2, and 0 < k < p such that
i = 1, 2, 3} is finite cyclic with generator of order p,

and where either k = 1, p = k + 2, p = 2k + 1, or
p=6 andk=2 or3.
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The proof of 3.5 uses a relative form of the weight test [BoPr92, Theorem
2.1] to detect the (A) property. In case 1 holds, explicit spherical pictures are
constructed and it can be shown that the homotopy classes of these pictures do
not lie in the submodule of 7r2P that is generated by the image of ir2Q -* ir2P.
When 2 holds, G is shown to have finite subgroups that are not conjugate to
subgroups of H. It follows from a theorem of Serre (see [BoPr92, Theorem
1.4]) that P is not (A) over Q.

Theorem 3.6 ([BoPr92]) Suppose that R = tatbt-1c (a, b, c E H)-

1. If one of b, c has infinite order in H, then P is (A) over Q.

2. If b, c have finite orders p, q, then P is (A) over Q except possibly if
1/p+ 1/q > 1/2 or a-1ba = ck for some k, or aca-1 = bk for some k.

0

Edjvet [Ed91] has greatly improved the result 3.6. Suppose b, c have finite
orders p, q. Assume first that 11p+ 1/q > 1/2. Edjvet uses the relative form
of the weight test and a "curvature adjustment" technique based on 1.1 to
prove that P is (A) over Q unless a, b, c satisfy any one of nine special families
of relations in H. In these nine cases, Edjvet constructs explicit spherical
pictures over P that are not pictures over Q, and which have no dipoles. It
is reasonable to expect that the homotopy classes of these pictures do not lie
in the submodule of 7r2P that is generated by the image of ir2Q -* 7r2P. The
same sort of results are proved in the case when 1/p+ 1/q < 1/2, except here
there are six special families of relations, and the cases (p, q) = (8, 4), (9, 3)
are left unresolved.

The t-length four case becomes even more complicated. In the case when
all powers of t are positive, ir2P is studied in [BaBoPr]. (The injectivity of
H i G follows from the result of Levin mentioned above.) When the powers
of t are not all positive, the injectivity of H -4 G has been discussed in
[EdHo9l]. Very little has been done concerning ir2P.

We remark that as this article was being written, new work of Klyachko
[K192] came to our attention. He proves a new result concerning diagrams
on spheres and uses this to investigate the injectivity of H -4 G in some
significant cases. Results about 7r2P are not mentioned explicitly, but it is
clear that Klyachko's ideas will have considerable future use in computations
of 7r2.



Chapter VI

Applications of Diagrams to
Decision Problems

Gunther Huck and Stephan Rosebrock

In this chapter, classical decision problems such as the word and conjugacy
problem are introduced and methods are given for solving them in certain
cases. All the methods we present involve Van-Kampen diagrams as one of
the most powerful tools when dealing with the classical decision problems.

1 Introduction

In 1912, Max Dehn formulated in his article ,Uber unendliche diskontinuier-
liche Gruppen" ("On infinite discontinuous groups") three fundamental prob-
lems for infinite groups given by finite presentations: the identity problem,
the transformation problem, and the isomorphism problem. The following is
a translation of Dehn's definition of the first two problems called in modern
terms the word problem and the conjugacy problem:

The identity problem (word problem): Let an arbitrary element of the
group be given as a product of the generators. Find a method to de-
cide in a finite number of steps whether or not this element equals the
identity element.

The transformation problem (conjugacy problem): Any two elements
S and T of the group are given as a product of the generators. Find a
method to decide whether or not S and T are conjugate, i.e., whether
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or not there exists an element U of the group that satisfies the equation
S = UTU-1.

In this chapter we wish to give an account of some recent developments that
use Dehn's original geometric ideas in extending partial solutions of the word
and conjugacy problems, in particular some recent generalizations of small-
cancellation theory.

2 Decidability and Dehn's Algorithm

Dehn's definitions of the word and conjugacy problems represent quite accu-
rately what we call in modern terms decision problems. In a decision problem
one considers a question with possible answers 'yes' or 'no' about the ele-
ments of a countable set. If there exists an algorithm, i.e., a well defined
set of directions for a sequence of mathematical steps, which when applied
to any element of the set will, after finitely many steps, produce the correct
answer, we say the problem is decidable or (recursively) solvable; equivalently
the subset for which the answer to the question is yes (respectively no) is
called recursive. When Dehn formulated his fundamental problems for in-
finite groups, "algorithm" was an intuitively well understood notion which
had not yet been formalized. The formalizations of the notions algorithm
and computability by Turing (1936) [Tur37], Church (1941) [Chu4l], and
Markov (1954) [Ma54] were proved to be equivalent and led in the 1950s to
a generally accepted theory of computability and thereby to a precise defi-
nition of "decidable" or "recursive set". One can briefly say that a question
is decidable if there exists a Turing machine that halts on all inputs produc-
ing the right answer. The precise definition of algorithm made it possible to
prove many decision problems to be unsolvable in general. Novikov [No55]
and Boone [Bo55] constructed in 1955 the first examples of finitely presented
groups with unsolvable word problem, deriving them from Turing machines
with unsolvable halting problem. For an account of these results and the
definition of Turing machine, see [Ro73, Chapter 121 and [Sti82].

The word problem as stated by Dehn is clearly equivalent to the problem of
deciding whether or not two given words represent the same group element;
it is also a special case of the conjugacy problem. Although the word problem
and conjugacy problem are usually stated for a finite presentation of a group,
they apply more generally to recursive presentations, i.e., presentations with a
finite set of generators and a recursive set of relations. One could easily allow
countably many generators in this context; however, the following result does
not carry over to the class of countably generated presentations: For finitely
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generated recursively presented groups the solvability of the word problem
or the conjugacy problem are algebraic invariants, i.e., independent of the
specific finitely generated presentation (see [Co89] sect. 9.3, and [Mi92]).
For simplicity we will restrict ourselves in the following to finitely presented
groups.

In many cases the word problem or conjugacy problem is solved by a normal
form, i.e., a unique representation for each group element as a word in the
generators, which mostly includes an algorithm that transforms a group ele-
ment represented by some word into its normal form. The simplest examples
are free groups and free abelian groups. The word problem for free abelian
groups is trivial; in the standard presentation of a free group the normal
form for the word problem (resp. the conjugacy problem) is the set of freely
reduced words (resp. cyclically reduced words). Algebraic classes of finitely
presented groups with solvable word problem include linear groups, residu-
ally free groups, residually finite groups, and residually nilpotent groups. A
rather comprehensive account of results on decision problems in group theory
can be found in [Mi92].

Definition 2.1 Given a finite presentation P = < xl, ... , xn I R1,.. . , Rm >
for a group G, we say P is a Dehn presentation or satisfies Dehn's algorithm
if every non-trivial word w which represents the identity element in G has a
subword v that is equal to a subword of a cyclic conjugate of a defining relator
or its inverse R11 and has length JvJ > IRil/2.

If we assume, as is customary in small-cancellation theory, that the set of
defining relations is symmetrized, i.e., closed with respect to inversion and
cyclic permutation, the subword v becomes a prefix of a relator R (we will
generally use "relator" or "relation" to mean defining relation). Dehn's al-
gorithm for solving the word problem of a symmetrized Dehn presentation
is now obvious: A non-trivial word represents the identity element in G if
and only if it can be reduced to the trivial word by the following elementary
reductions:

1. free reductions, and

2. if v is a subword of w such that JvJ > Jul and vu = R is a relator, then
replace v by the shorter subword u-1.

It is not difficult to convert this into a well defined algorithm. Dehn's proof
in [De12] that this algorithm applies to the standard presentations of closed
orientable surface groups of genus n > 2 is a very simple argument, using
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the regular tessellation of the (hyperbolic) plane that represents the universal
cover of the standard cell decomposition of the surface:

Consider this regular tessellation by 4n-gons with 4n regions coming together
at each vertex. We select one region of this tessellation and call it the central
region. Dehn divides this tessellation into concentric rings around the central
region, where the first ring consists of all regions that touch the boundary
of the central region, the second ring consists of the regions that touch the
outer boundary of the first ring etc.. One can now easily observe, by looking
at a picture of such a tessellation, that, except for the central region, 4n - 2
or 4n - 3 successive edges of the boundary of each region lie in the outer
boundary of the ring to which the region belongs, two edges are radial edges,
i.e., connect the inner and outer boundary of the ring, and at most one edge of
the region lies on the inner boundary of the ring, we will call the boundaries
of the rings "circles". Now let the word w = 1 be represented by a closed edge
path that starts w.l.o.g. at a vertex of the central region. Let a be a vertex
on the largest circle which is reached by the path, more precisely let a be the
first vertex along the path that lies on this circle, i.e., the edge before a is a
radial edge that crosses a ring (unless the entire path lies on the boundary
of the central region, but then the proof is trivial). Then, either the path
continues from a on this largest circle for at least 4n - 3 edges or there is
some backtracking. In the first case an elementary reduction of type 2 is
possible (homotope the path across a region replacing the 4n - 3 or 4n - 2
boundary edges of the region by the opposite 3 or 2 edges); in the second case
w allows a free reduction.

Dehn's algorithm for the conjugacy problem for fundamental groups of closed
orientable surfaces, which is of similar simplicity (although the proof is not
quite as simple), does not carry over to the general case of a Dehn presenta-
tion. Nevertheless, by Gromov's result that hyperbolic groups (in the sense
of Gromov) are exactly the groups that allow a Dehn presentation (compare
Theorem 4.2 in this chapter) and by the fact that hyperbolic groups have
solvable conjugacy problem (see [CoDePa90]) we know that groups with a
Dehn presentation always have solvable conjugacy problem.

3 Cayley Graph and van Kampen Diagrams

Let G be a finitely generated group and X = {x1,. .. , a set of generators.
Denote by X±1 the set of generators and their inverses.

Definition 3.1 The Cayley graph r(G, X) is a directed labeled graph defined
as follows: the set of vertices is the set of group elements G and for every
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pair (g,xi) E G x X there is a directed edge labeled xi from the vertex g to
the vertex gxi.

Another customary definition of the Cayley graph uses G x X}1 as edge set.
This means that for each edge from g to gxi labeled xi there is a parallel
but oppositely oriented edge from gxi to g labeled x71. In our definition we
identify these two parallel edges and think of the inverse of the edge from g to
gxi as the same edge traversed against its orientation, i.e., from gxi to g, and
having label xi 1. A path in the graph is a sequence of edges or their inverses
that constitutes a continuous path, i.e., the endpoint of the i-th edge equals
the startpoint of the (i+1)th edge. The word associated with a path is the
corresponding sequence of labels (consisting of generators or their inverses).
Define the distance between two vertices g and g' in the Cayley graph to be
the number of edges in a shortest path connecting them, which is equal to
the length of the shortest word representing the group element g-1g'. This
metric is called the word metric.

If P = < x1 i ... , x,, I R1,... , is a finite presentation for G, then r(G, X)
is equal to the 1-skeleton of the universal cover of the standard 2-complex K9
associated with the presentation. This can be seen as follows: If we attach
2-cells to all cyclic closed paths in r(G, X) that read a defining relation, we
obtain a 2-complex K(G, X) which is obviously a covering of K. To see that
K(G, X) is also simply connected (and hence is the universal covering KP)
one uses that every closed edge path p represents a word w which equals 1
in G, i.e., w is freely equivalent to a product of conjugates of defining rela-
tions or their inverses: ff 1 uj R;' u 1 (ej E {+1, -1}). This free equivalenceJ= j
produces a homotopy between p and a product of paths pj that represent the
factors u R;' u 1. Clearly, the paths pj are nullhomotopic in K(G, X), hence,
p itself is nullhomotopic.

Let F be the free group on the generators x1,... , x , of the presentation P.
We denote by Rtl the set of all defining relations and their inverses, and by
R* the symmetrized set of defining relations.

Definition 3.2 A finite, connected graph in the plane whose edges are ori-
ented and labeled by generators of P is called a van Kampen diagram over
P if the boundary path of every finite face reads a word in R*.

Given a van Kampen diagram over P. If we fill each finite face of this planar
diagram with a 2-cell, we obtain a planar, connected, and simply connected
2-complex with oriented labeled edges. We adopt the convention that the
label on a boundary path (of a 2-cell or of the entire planar diagram) is
read clockwise starting at a given basepoint. Now let w be the label on the
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boundary path of the diagram with respect to a given basepoint. In each
2-cell we can mark a corner as a basepoint and label the 2-cell by a relator
r E Rt1 such that the label on the boundary path is r. This way we get a map
from the diagram into K2 that represents a null-homotopy of the boundary
path w (considered as a path in K2). This implies w = 1 in G. Therefore,
a van Kampen diagram with boundary label w is also called a cancellation
diagram for w.

For the converse: If w is a reduced word that represents the identity in G
then there exists a van Kampen diagram over P whose boundary label is w.
To show this we start by writing w as a product of conjugates of relations:

k

w=flujR;-u?1
j=1

(1)

The right hand side of (1) which is a non-reduced word can be represented
by a "bouquet of balloons"-diagram as in Figure 1. To get a diagram for the
reduced word w, one has to realize a sequence of elementary free reductions
geometrically (in the diagram). We do this one elementary reduction at a
time, by identifying the pair of consecutive edges in the boundary path of the
diagram that corresponds to the cancelling pair of letters. In certain cases
such an identification may squeeze off a sphere that is attached to the rest of
the diagram along an edge, and one preserves the planarity of the diagram
by deleting the interior of this sphere (For details see [Jo80] pp. 215). This
complication with spherical components can also be avoided by assuming that
the number k of factors in (1) is minimal.

Figure VI.1. bouquet of balloons

The following notion of an isoperimetric function or an isoperimetric inequal-
ity originates from differential geometry and was introduced into geomet-
ric group theory by Gromov [Gr87]. However, a (quadratic) isoperimetric
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inequality was already used by Lyndon [Ly66] as principal tool in small-
cancellation theory to solve the word problem for the non-metric cases. (Lyn-
don calls it the "area theorem")

Given a van Kampen diagram over the presentation P for the word w, the
number of finite regions of the diagram is called its combinatorial area.

Definition 3.3 A function f : N -4 N is called an isoperimetric function or
Dehn function for P if it satisfies the following condition: for every reduced
word w of length at most n representing 1 in G there exists a van Kampen
diagram with combinatorial area at most f (n).

The condition in the definition is of course equivalent to the following: if
w = 1 in G and JwJ < n then w can be written in F as a product of k < f (n)
conjugates of relations or their inverses: w = nk 1 u3 RLj 17 1. Some authors
define the Dehn function to be the minimum of all isoperimetric functions,
i.e., f (n) = max{Area(w)lw = 1, JwJ < n}, where Area(w) is the minimal
number of relators or their inverses needed in a van Kampen diagram for w.

In the context of discussing the complexity of the word problem, mainly the
growth type of an isoperimetric function is important. Following Gersten
[Ge90], we define: f : g if `dn E N, f (n) < Ag(Bn + C) + Dn + E, where
A, . . . , E are positive constants, and we define: f - g if f g and g
f. It is not difficult to see that equivalence classes of isoperimetric func-
tions are invariants of the group [Ge90]. They are even geometric invariants,
i.e., invariants of the quasi isometry type of the group [A1901.

Two metric spaces (X, d) and (X', d') are said to be quasi isometric if there
exist maps f: X - X' and f': X' -+ X (not necessarily continuous) and
constants A > 0, C > 0 such that for all x, y E X, and x', y' E X':

d'(f (x), f (y)) S Ad(x, y) + C d(f'(x'), f'(y')) < Ad'(x', y') + C

d(f'(f (x)), x) < C d' (f (f'(x')), x') < C

The first inequalities represent Lipschitz conditions, however, by the additive
constant C, f and f' need not be continuous. The second inequalities express
the failure of f and f' to be inverses by an error margin of C.

Two finitely generated groups are said to be quasi isometric if their Cayley
graphs with respect to given finite sets of generators (and equipped with
the word metric) are quasi isometric. It is not difficult to show that Cayley
graphs of the same group with respect to different finite sets of generators are
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quasi isometric; therefore quasi isometry between groups is well defined. For
a discussion of quasi isometry and geometric properties of groups see [Gh90],
[GhHa90], [Ep92], and [GhHa9l].

If G has an isoperimetric function of a certain type, such as linear, or quadratic
etc., we say G satisfies an isoperimetric linear (or quadratic) inequality. The
following result is stated in [Ge90] (also in [Ep92]) with parts of the proof
sketched there.

Theorem 3.4 (Gersten) For any finitely presented group G the word prob-
lem for G is solvable, if and only if G has a recursive isoperimetric function. 11

Since this theorem is significant for the remainder of this chapter, we will
discuss its proof in more detail. The insight that an isoperimetric func-
tion produces a solution of the word problem goes back to Lyndon's use
of (quadratic) isoperimetric functions to solve the word problem for small-
cancellation groups. The basic argument is this:

If w = 1 in G then there is a van Kampen diagram D for w with k < f (n)
2-cells (f an isoperimetric function for a given presentation of G, n = JwJ).
This implies: w = 1 ujR;' u 1 with k < f (n) factors. One can show
that the lengths of the conjugating words uj are also bounded, namely, by
(f (n) + 1)M + n/2, where M is the maximal length of a defining relator.
Hence, in order to decide if w = 1 in G or not, one has only to consider a
finite list of products of conjugates of relations (which can be generated by
a simple algorithm) and determine if one of these freely reduces to w. The
entire process will be an algorithm for the word problem if the isoperimetric
function f is algorithmically computable, i.e., recursive.

It remains to show that from a solution to the word problem for G one obtains
a recursive isoperimetric function for G: Since w = 1 in G is defined by w
being freely equivalent to a product of conjugates of defining relators or their
inverses, such an algorithm for the word problem in G will produce for each
reduced word w that is 1 in G a unique product of conjugates of relations:
rlj=1 ujR;'u 1 ("unique", since each step is uniquely determined because we
have an algorithm). Now, let f (n) be defined as

k

max {k E Nlk = #of factors in w = fi ujR; u 1
w=1 in G, 1wi<n 9=1

where jjj=1 ujR;'u 1 is the unique output of the algorithm on input w. Since
the maximum is taken over a finite set, f (n) is well defined and is an isoperi-
metric function for the given presentation of G. Since it is defined by an
algorithm it is recursive.
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If combinatorial area as geometric measure of a diagram is replaced by diam-
eter, one obtains the concept of an isodiametric function. For a van Kampen
diagram D with basepoint vo define Diamo (D): = maxvED(o) d(vo, v), where
d is the word metric of the 1-skeleton of the diagram. A function f : N -4 N
is called an isodiametric function for P if for every word w of length at most
n representing 1 in G there exists a van Kampen diagram D for w with base-
point vo and Diamvo (D) < f (n). Equivalence classes (generated by " -< ")
of isodiametric functions are also geometric invariants of the group, and the
property of having a recursive isodiametric function is again equivalent to G
having solvable word problem. For a discussion of isodiametric functions and
their relation to isoperimetric functions see [Co91], [Ge90], and [Ge912].

4 Word Hyperbolic Groups and Combings

Let G be a group with a finite set of generators X = {x1, ... , x".} and let
r = r(G,X) be the Cayley graph equipped with the word metric. The word
metric is actually only defined on the set of vertices of r, although distance
(in the wordmetric) is defined in terms of minimal length of paths connecting
two vertices. A shortest path is called a geodesic path, a geodesic triangle
consists of three geodesic paths that form a triangle (the paths may cross
each other and one side may degenerate to a constant path).

The following definition of a hyperbolic group is due to Gromov [Gr87] who
initiated the study of hyperbolic groups and of many other geometric proper-
ties of groups. There has been a general consensus to use the notation "word
hyperbolic" or "negatively curved" for these groups to distinguish them from
groups that are closer related to hyperbolic manifolds, and we will use the
term "word hyperbolic group". Among the many equivalent definitions, we
choose the one in terms of 6-thin triangles: Let d be a non-negative real num-
ber. A geodesic triangle in r is called 6-thin if the distance from a point on
one side to the union of the other two sides is bounded above by S.

Definition 4.1 We say the Cayley graph r is b - hyperbolic if all geodesic
triangles in r are 6-thin. The group G (with generating set X) is called word
hyperbolic if r(G, X) is 6-hyperbolic for some non-negative constant S.

The property of being word hyperbolic is independent of the specific finite
generating set and even invariant under quasi isometry. However, the value
of 5 in the definition of b-hyperbolic is sensitive to a change of generators.

Some group theoretic properties of word hyperbolic groups can be found in
[Ly90]. Explicit proofs of the following equivalent characterizations of word
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hyperbolic, due to Gromov, can be found in [Sh91] and [CoDePa90].

Theorem 4.2 For a finitely generated group G the following are equivalent:

(i) G is word hyperbolic,

(ii) G satisfies a linear isoperimetric inequality,

(iii) there exists a Dehn presentation for G, i.e., a presentation satisfying
Dehn's algorithm.

Another very influential recent development in combinatorial group theory
concerns the application of automata theory to finitely generated groups in
the study of automatic groups. We do not wish to go deep into automatic
group theory; but concentrate instead on the geometric concept of a combing
of a group which developed as a generalization of the notion of an automatic
structure on a group. An automatic structure can be characterized using
the geometry of the Cayley graph, as follows: it consists of a set of words in
the generators and their inverses which represents all elements of G, forms a
regular language (i.e., is the language accepted by a finite state automaton),
and, viewed as a set of paths in the Cayley graph, has a characteristic ge-
ometric property, called the k-fellow-traveller property. If one extracts this
characteristic geometric property from the concept of an automatic group,
forgetting the requirement that the set of words representing G should be a
regular language, one obtains the concept of a combing.

The notion of combing was introduced by Thurston and developed in [Sh90],
[Ep92], [Ge92], [A192], and [A1Br92]. Since the notation and definitions differ
slightly in the different sources, we use our own. The ideas of the proofs in
this section follow closely the account in [Sh90], [A1Br92] and [A192].

Let G be a group with generating set X and let r be the corresponding
Cayley graph. In the context of combings it is convenient to define a path in
the Cayley graph to be a continuous map p : [0, oo[-+ r which is at integer
times at vertices (i.e., from t = n to t = n + 1 the path either travels an
edge between two vertices or pauses at a vertex). We will only consider
finite paths in the sense that there exists a non-negative integer h such that
PI[h,,,[ = constant = the endpoint of the path, and the minimum h with this
property is called the length of the path: 1p1, (this is the "time" it takes the
path to reach its endpoint). Choosing [0, oo[ as a universal domain allows
us to consider paths of different lengths over the same parameter. Given the
start point in r, a path is completely described by a sequence of elements in
X U X-1 U 1 which provides the sequence of labels on the edges, the letter 1
representing a pause of length 1. If we delete the letters 1 in the sequence we
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get the "word associated with the path" which represents the group element
g-' h, where g is the startpoint and h the endpoint of the path; in particular
if the startpoint is the identity element, as in the subsequent definition of
"combing", the word represents the group element at the endpoint of the
path.

Definition 4.3 A combing of G with respect to X is a selection of a path
a(g) from 1 to g in r for each g E G, satisfying the following property: There
exists an integer M such that, for each pair g, g' E G of distance 1 in r ,

d (a(g) (t), a(g') (t)) < M V integers t E [0, oo[. (2)

Definition 4.4 A bicombing of G with respect to X is a selection of a path
v(g, h) from g to h in r for each pair (g, h) E G x G, satisfying the condition:
There exists an integer M such that, for each two pairs (g, h), (g', h') with
d(g, g') < 1 and d(h, h') < 1,

d((a(g, h)(t), a(g', h')(t)) < M V integers t E [0, co[. (3)

We call the paths or (g), a(g, h) the combing lines, bicombing lines respectively.
Hence, condition (3) expresses that two points travelling simultaneously along
bicombing lines that begin and end distance less or equal than 1 apart, will
always remain within bounded distance M of each other, independent of
the lengths of the paths. The formula (2) describes a similar behavior for
combing lines. We call the distances in (2) and (3) which are bounded by M,
the geodesic differences between adjacent (bi)combing lines. The following is
an easy consequence of Definition 4.4:

Lemma 4.5 If the bicombing or satisfies (3) then for each pair of bicombing
lines that begin and end distance less or equal than k apart (k a positive
integer), the geodesic differences are bounded by kM.

A bicombing is said to be equivariant if oa(g, h) = g a(l, g-'h) Vg, h E G,
i.e., if the bicombing lines of translates of pairs (g, h) in I' are translates
of each other. "Translate" means translation under the operation of left-
multiplication by a group element (which is an isometry of the Cayley graph).
A group is said to be (bi)combable if it has a (bi)combing. Again, this notion
is independent of the choice of finite generating set and also invariant under
quasi isometry (see [Sh90]).

We say a combing is linearly bounded, polynomially bounded, recursively bounded
if the length lv(g)I < f (d(1, g)) with f linear, polynomial, recursive re-
spectively; these terms generalize in the obvious way to bicombings.
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The following theorem may be found in [A1921 and [Ep921.

Theorem 4.6 (i) Every combable group is finitely presented.

(ii) If G admits a combing that is polynomially bounded of degree n then G
satisfies a degree n + 1 polynomial isoperimetric inequality and a degree
n polynomial isodiametric inequality.

(iii) If G admits a recursively bounded combing then the word problem for G
is solvable.

Proof: Let or be a combing of G with respect to a finite generating set X
and let w = a1a2 ... ak be a reduced word in X+1 that equals 1 in G. Define
wo := I and wi := a1 ... ai, (i = 1, ... , n).

Consider the closed path in r, based at the identity element, that reads w,
then the group elements w, are the vertices along this closed path. Let M be
the constant associated with the combing in condition (2). If Jw) > 2M + 2,
consider the "fan" of combing lines o(wl) that connect the basepoint 1 to
the vertices w, of the closed path. Now, connect the corresponding points
o(wi)(t) , o(wi+1)(t) (t a positive integer < max{Jo(wi)I, 1o(wi+i)I}) of ad-
jacent combing lines by geodesics (see Figure 2).

Wi

Figure VI.2. combing

By condition (2), the connecting geodesics between adjacent combing lines
are not longer than M, therefore each triangle consisting of the combing lines
o(wi), o(wi+1), and the edge from w2 to w2+1 on the path w, breaks up into
closed paths of lengths < 2M + 2 consisting of connecting geodesics and
segments of length 1 along the bicombing lines (see Figure 2).
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This way we have constructed a van Kampen diagram for w over the finite
presentation P for G that uses the set X as generators and all relations of
length < 2M + 2 as defining relations (if Iwl < 2M + 2 then w itself is a
defining relation of P and therefore has a van Kampen diagram with one
region). The fact that each reduced word w that equals the identity in G has
such a van Kampen diagram, proves that P is a finite presentation for G.

If the combing is bounded by a function f and Jw{ = n then the number of
regions in the van Kampen diagram for w (constructed above) will be bounded
by the isoperimetric function: f (n/2) n; (here we use that d(1, wti) < n/2 if
I w I = n). This isoperimetric function will be polynomial of degree n + 1 if f is
polynomial of degree n, and recursive if f is recursive. It is also clear that the
diameter of the diagram is bounded by f (n/2) + M/2, giving an isodiametric
function of the same growth as f.

The condition 'recursively bounded' in (iii) is not necessary in order to get a
solution to the word problem (see [Ge92]).

Theorem 4.7 ([Sh90]) If G admits an equivariant, recursively bounded bi-
combing with respect to a finite generating set X then G has solvable conjugacy
problem.

Proof: Let or be an equivariant bicombing of G with respect to X. We
claim: this equivariant bicombing supplies for any pair of conjugate reduced
words x, y a bound N, which only depends on the lengths JxJ and lyl, such
that one can find a word of length < N conjugating x to y. This means,
in order to decide whether an arbitrary pair of reduced words is conjugate
or not, we only have to consider the finite set of reduced words w of length
< N as possible conjugators. Since Oi{1}xG defines a recursively bounded
combing, the word problem is solvable for G and one can decide whether the
set {wxw-1y-'Iw reduced of length < N} contains a word representing the
identity in G.

Although, so far we have been informal in using the same notation for a
word representing a group element and the group element itself, in the fol-
lowing proof we distinguish the two objects by writing w for a group element
represented by the word w. To prove the above claim, assume that g E G
conjugates x to P. Consider the bicombing line a(1, g) from 1 to g and its
translate y a(1, g) = or (9, yg) from y to pg. The distance of their start points
1 and y is < lyl, the distance of their endpoints g and gx = yg is < JxJ.
Therefore they satisfy the hypothesis of Lemma 4.5 with k = max{Ixl, lyl},
and the geodesic differences between them are bounded by M max{JxJ, IyI}.
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Now consider the closed rectangular path in r, based at the identity, that
is depicted in Figure 3 gig-ly 1 = 1. The horizontal lines are the bi-
combing lines, the vertical lines are paths reading the words x and y re-
spectively. For each positive integer t < jQ(1,g)j we connect the points
v(1, g)(t) and a(y, yg)(t) by a geodesic path y(t). The lengths of each -y(t) is
< M max{jxj, jyj}.

y a( Y, Y g) = ya(l, g)
10

Y A

1

Y(1) y (2)

a(1, g)
40

Figure VI.3. A bicombing

y(t+k)

Yg=gx

x

g

The trick for proving the claim now is the following: If the bicombing line
a(1,g) is "too long" in the sense that the word associated with it has length
greater than N which is the number of reduced words of length less or equal
than M max{jxj, jyj }, then at least two of the geodesic connecting paths,
say y(t) and y(t + k) read the same word. In that case we can "cut out"
the middle section of the rectangle in Figure 3 and glue the shaded right
section onto the shaded left section along the word y(t) = y(t + k). This is
possible since the Cayley graph is "homogeneous", i.e., the two paths y(t)
and y(t + k) whose labels are the same, correspond under an isometry of r
that preserves all edge labels. The property that the horizontal paths are
translates of each other (and, hence, read the same word) is preserved under
this "surgery operation". (Here we need the equivariance of the bicombing.)
By repeating this operation a sufficient number of times we arrive at a word
w of length < N such that wiw-ly 1 = 1.

By a similar surgery argument as in the above proof, Gersten showed in
[Ge92] that every combable group satisfies an exponential isoperimetric in-
equality. Meanwhile several generalized notions of combings and bicombings
were introduced, (see [Bri92], [Me93] and [HuRo93]).
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5 Curvature Tests

In this section, we would like to give criteria for presentations and 2-complexes,
under which linear or quadratic isoperimetric inequalities are valid. The
methods presented here, which are the hyperbolic weight test, the hyperbolic
cycle test, and a uniform weight test (Theorem 5.9), may all be considered
generalizations of small-cancellation-theory.

Consider a finite presentation P = < xl,... , xn I R1,... , Rm > and its stan-
dard 2-complex Kp. Then the Whitehead graph Wy (which was already
defined in Chapter I, §3.1) is the boundary of a regular neighbourhood of the
only vertex in K. It consists of 2 vertices +xi and -xi for each generator
xi of P which correspond to the beginning and the end of the edge labeled xi
in Kp. The edges of WP are the corners of the 2-cells of the 2-complex. The
star graph Sp was defined in the last chapter. It is the same as the Whitehead
graph if no relator of P is a proper power. Let F denote the free group on
the generators of P.

If a relator Ri of P has the form wk' with wi not a proper power (we will call
IwiI the period of Ri), then the star graph Sy is the Whitehead graph of the
presentation < x1, . . . , xn

I
w1, ... , wm >. We denote by d(Ri) the length of

Ri, that is the sum of the absolute values of the exponents of Ri.

Throughout this section we will use the stargraph Sp instead of the Whitehead
graph, for the following reason: when dealing with algebraic questions such
as the word problem, a rotation of a relation, which is a proper power, by any
multiple of its period, is irrelevant (whereas, when dealing with homotopy
invariants of the 2-complex, such rotations are quite significant, see Chapter
V). Therefore we do not have to distinguish corners in such a relation that
correspond under this periodicity; such corners are identified in the stargraph
to one edge. By abuse of notation, from now on, we will often call an edge in
the stargraph a corner.

A cycle is a non-constant closed path that is cyclically reduced, i.e., no oriented
edge in the cyclic sequence is followed immediately by its inverse. Similarly
we define non-closed reduced paths. A simple cycle is a cycle where no vertex
is passed twice. A weight function is a real valued function on the edges of
the graph, its values are called weights. If g is a weight function and z is a
cycle we denote by g(z) the sum of the weights that occur in the cycle where
the weight of an edge that occurs several times in the cycle is counted with
multiplicity. By d(z) we denote the number of edges, that are traversed by z,
again counting with multiplicity.

A combinatorial map (in the strong sense) is a cellular map that maps each
open cell homeomorphically onto an open cell. A cell complex is said to be
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combinatorial if its attaching maps are combinatorial. We consider diagrams
f : M -+ Kp, where M = S2 - Ui<,D? is a combinatorial cell decomposition
of a 2-sphere minus T > 0 open 2-cells and f is a combinatorial map. For
T = 1 this definition coincides with that of a van Kampen diagram given in
§3. For the word problem or conjugacy problem respectively, T will be one
or two. Usually one works with diagrams M that are reduced, in the sense,
that there are no two 2-cells D1 i4 D2 E M, that have an are t with label
w in common with the following properties: D1 is labeled v1w, D2 is labeled
v2w-1 and V1 V2 freely reduces to 1. If M is not reduced, then we may perform
reductions (i.e., deleting D1, D2) in M without changing the boundary label.
If a diagram is reduced, then the link of every vertex of M gives rise to a
cycle (or to a reduced path in the case of a boundary vertex) in Sp.

G. Huck made an observation which allows us to restrict ourselves to cycles
and reduced paths in the star graph, where no edge is passed twice in different
directions. Let z be a cycle or a reduced path in SS, that uses an edge twice in
different directions, corresponding to a vertex Q in a diagram M. Then there
are two 2-cells D1 # D2 E M with Q in their boundary and with boundary
labels 5D1 = vi (start reading around Di at Q according to a given orientation
of M) such that v1v2 freely reduces to 1. A reduction may be performed as
in Figure 4. This notion of reduction includes the previously defined one.

Figure VI.4. Reduction along a vertex

v1 v21

In the following discussion of the weight test and the cycle test, we only have
to consider diagrams that are reduced in the stronger sense, that such pairs
of 2-cells do not occur. Thus, when we speak of a cycle or a reduced path we
assume that no edge is passed twice in different directions, and if we speak
of a reduced diagram we assume that it is reduced in this stronger sense, i.e.,
the link of every vertex corresponds to a cycle or reduced path (that does not
pass an edge twice in different directions).

At first, we want to define the hyperbolic weight test of Gersten [Ge871] and
Pride [Pr88] together with a generalization of it, the hyperbolic cycletest of
Huck/Rosebrock [HuRo92]. They are closely related to the weight test (which
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was presented in the last chapter) and the cycle test of [HuRo92] and differ
from them by a slightly stricter hypothesis which yields that groups defined
by presentations satisfying this hypothesis are word hyperbolic.

We say a presentation P satisfies the hyperbolic weight test (WT), if there
exists a weight function g for the star graph Sp satisfying the two conditions:

1. for all relators R of P:

F g(ry) < d(R) - 2, (4)

yER

where the sum ranges over all corners 'y E R,

2. for all simple cycles z E Sp

g(z) > 2. (5)

Alternatively, we could have put a `less or equal' sign in the first inequality
and a `strictly greater' sign in the second one. This would lead to the same
statements and to very similar proofs in what follows.

In the original formulation of the (hyperbolic) weight test, condition (5) is
required to hold for all cycles. Working with diagrams that are reduced (in
the stronger sense) makes it possible to restrict (5) to simple cycles and it
will be automatically satisfied for all cycles: It is easy to see that if all simple
cycles satisfy (5) then so do cycles z E SP that pass each edge at most once.
Such cycles will be called unsplittable, and we will see later that w.l.o.g. it
suffices that all unsplittable cycles satisfy (5).

In order to define the hyperbolic cycle test, we need to consider sequences of
cycles. A sequence of cycles describes the local incidence configuration of a
2-cell in a diagram: Consider a 2-cell D in a reduced diagram over KP labeled
by the relator Ri. Each vertex of the 2-cell in the diagram has either a disk
neighborhood, described by a cycle in Sp, or a half-disk neighborhood (if the
vertex belongs to the boundary of the diagram), described by a reduced path
in Sp. When we list these cycles or reduced paths, in order, according to an
orientation of the boundary of the 2-cell that follows the word Ri, we obtain
what we call a "sequence of cycles for Ri" (which actually consists of cycles
and reduced paths, unless the 2-cell is in the interior of the diagram). In ad-
dition, each cycle or reduced path in such a sequence of cycles has a preferred
corner, namely the "inside corner" of D. This provides the geometric idea of
the following definition.

Let Ri be a relator of P and Di the corresponding 2-cell of Kp. For each Ri
there is a (in general infinite) set of sequences of cycles {Zil, Z?,. ..}. Each
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sequence of cycles Z, is an ordered set of m = d(R;) cycles or reduced paths
(zl, ... , z,,,) in S- p, together with a preferred edge ,6t in each zt (called the
inside edge), satisfying the following three conditions:

1. No cycle or reduced path zt of some Z, passes an edge twice in different
directions in Sp.

2. If we give the edges /3 the orientation induced by the paths zt then
the sequence of oriented edges (/31, ... , ,,,) is the sequence of oriented
corners read along the boundary of D; in the direction of the word R;.

3. Suppose zt = yl ... y, and zt+1 = al ... aµ (t + 1 = 1 if t = m) are
consecutive cycles or reduced paths of the sequence of cycles Z, and
suppose /3t = -yt and 0t+1 = ak are the inside edges of zt and zt+1 in 4.
Then either a) y1+1 and ak_1 are adjacent corners of the same relator
R3 or b) y1+1 and ak_1 do not exist (i.e., y and a are reduced paths
with yy the last edge of y and ak (k = 1) the first edge of a). If, in
either case, yt ends in a vertex +a (-a) of SP then ak starts in -a
(+a) respectively, and, furthermore, in case a), the relators R3 and R,
have an edge a in common. This gives intuitively a local diagram (see
Figure 5).

Figure VI.5. part of the relator R, in M

We say P satisfies the hyperbolic cycletest (CT), if for every sequence of cycles
Z, for every relator Ri there exists a weight function g, : {corners of R; } -+ IR,
that satisfies the following two inequalities:

1. for every sequence of cycles Z,:

g' (y) < d(R,) - 2 (6)

ryER;

2. Let z = yl ... y be a cycle with y3 E Ri,, and for every corner -ys let
Z, be a sequence of cycles for R;, containing z such that the weight
g?s (ys) is defined. Then:

E g'; ('YS) > 2 (7)
$
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From now on we will just speak of the weight test or cycle test and mean the
hyperbolic weight test or hyperbolic cycle test. Note that for a given sequence
of cycles Zi for Ri the weight function g' assigns weights only to the inside
corners (i.e., the corners of Ri). Unlike the weight test, the cycletest does not
assign unique weights to the corners of S. However, if a corner occurs in a
diagram then it belongs (as inside corner) to exactly one sequence of cycles
(in the diagram) and, therefore has a well defined weight. If P satisfies the
weight test, then it satisfies the cycletest, just by giving the corners of SP
fixed weights.

Our first goal is the next theorem. The proof in the case of the weight test is
due to Pride [Pr88]; its generalization to the cycletest is from Huck/Rosebrock
[HuRo92]:

Theorem 5.1 If the presentation P satisfies the weight test or the cycle test
then P has a linear isoperimetric inequality and, therefore, the corresponding
group is word hyperbolic and has solvable word- and conjugacy problem.

In order to prove this result we need some further notation: For any finite
graph F call a reduced path or cycle w of r splittable, if it is the sum of a
nontrivial reduced path or cycle zo and a nonempty set of cycles z1, ... , zµ.
By sum we mean: the number of occurrences of each edge in w is equal to
the sum of the numbers of occurrences of each edge in the zi E 1Z0.... , zµ}.

Lemma 5.2 In a finite graph there are only finitely many unsplittable reduced
paths and cycles.

Proof: Any path that uses an edge twice in the same direction is splittable
which may be seen by the picture in Figure 6.

Figure VI.6. Splitting a path

There are only finitely many paths that use each edge at most once in every
direction, because there are only finitely many words in the edges, that use
each syllable only twice.

In the case of the cycletest, we need a stronger definition of `unsplittable'. For
a fixed relator Ri, one cycle or reduced path z of a sequence of cycles Z, must
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be compatible with its neighbors z', z", in the sense that the two corners that
are adjacent to the inside corner of z are compatible with the corresponding
corners of z' and z" as expressed in point 2. of the above definition (see
Figure 5). So any splitting of cycles has to happen in such a way, that triples
of adjacent corners of a cycle or reduced path are not separated. A cycle or
reduced path z is called splittable (in the sense of the cycletest), if z traverses
a subpath of length two in SP consisting of edges a and b twice in the same
direction. If one "switches tracks" at the vertex between the edges a and b
in z (analogous to Figure 6), then one gets two reduced paths z1 and z2 that
have z as their sum. It is easy to verify, that any triple of adjacent corners
in z appears either in z1 or in z2. Iterating this process as often as possible
produces a set of unsplittable paths (all of which, except possibly one, are
cycles) whose sum is z.

For a given presentation P it suffices to find weight functions for sequences
of cycles consisting of unsplittable cycles or reduced paths satisfying (6) and
(7), in order to prove that P satisfies CT (see [HuRo92]): Choose for every
cycle or reduced path a fixed decomposition into unsplittable components,
and for every cycle or path in a sequence of cycles one of its unsplittable
components so that the corners adjacent to the inside corner are preserved.
This can be done in a unique way by an algorithm. W.l.o.g., the weights
of an arbitrary sequence of cycles can then be chosen as the weights of the
associated sequence of cycles with unsplittable paths (see the proof of 1.5
in [HuRo92]). In this case we say the weight functions are determined by
sequences of cycles with unsplittable paths. As in the proof of Lemma 5.2
we can easily show that there are only finitely many sequences of cycles with
unsplittable paths. This observation can be used to prove that the cycletest
is decidable. It is also used in the following lemma (whose proof is left as an
exercise) and in the proof of Theorem 5.1.

Lemma 5.3 Let P satisfy the cycletest with weight functions g1 that are
determined by sequences of cycles with unsplittable paths. Then there is a
non-negative constant N such that every reduced path w that occurs as link of
a vertex in a diagram has weight > -N.

Proof of Theorem 5.1: Let P satisfy the cycle test with weight functions
g; . If P satisfies the weight test the proof is very similar and left as an exercise.
By the above discussion we can assume w.l.o.g. that for every R2 there are
only finitely many different weight functions gi . Let c be the smaller of
min2j{d(R2)-Ei,ERg?(y)-2} and 1. Then (6) impliese > 0. Let f: M -> Kp
be a reduced diagram where M = S2-U2<TDz as above. The weight functions
g; induce unique weights on the corners of M. Let l(5M) be the sum of the
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lengths of each boundary component of M, i.e., the sum of the number of
edges in each boundary path S(D?) (counting edges with multiplicity). Let
F be the number of 2-cells of M. The following theorem is due to S. Pride
[Pr88] and proves Theorem 5.1:

Theorem 5.4
F < 3+N1(SM),

f
where N is the constant of Lemma 5.3.

Proof: We assume F > 2, otherwise the result is trivial. The weight functions
gi induce weights g(-y) on the corners ry of all 2-cells of M. Let

s = E E 9('Y)
D2EM 1ED2

Let c be the number of interior vertices of M, e the number of boundary
vertices and V the total number of vertices of M. Then c > V - l(5M) and
e < l(SM). The formula (7) and Lemma 5.3 imply s > 2c- Ne. All together
we get

s > 2V - 21(6M) - Nl(SM) (8)

On the other hand E.1ED2 g(-y) < d(D2) - (2 + E) and the definition of s gives:
s < ED2EM(d(D2) - (2 + E)). If we denote by E the number of edges of M,
the last inequality implies: s < 2E - l(SM) - (2 + E)F. Together with (8) we
get: 2V - 21(SM) - Nl(SM) < 2E - l(SM) - (2+ E)F. This is equivalent to

2V - 2E + 2F < 1(6M) (N + 1) - EF

The Euler-characteristic of M gives 4 - 2T < l(5M)(N + 1) - eF. Since
T < l(SM) it follows eF < 1(SM)(N + 3), which implies the theorem.

As an example to the weight- and cycletest we want to look at Wirtinger
presentations.

A Wirtinger presentation is a finite presentation

P=<xi,...,xf+i I Ri,...,R, >,

such that each relator has the form Ri : xi+1 = x"(i)xix ('> where Ei = ±1,
ir(i) E {1, ... , n + 1}. Such a presentation is sometimes called an interval
presentation, because it may be represented as a labeled directed graph IP
(which is an interval) in the following way: For each generator xi of P define
a vertex labelled i and for each relator Ri : xi+I = define an edge
from the vertex i to i + 1 labelled ir(i). Orient this edge from i + 1 to i if
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ei = +1 and from i to i + 1 if e, = -1. In the case of Wirtinger presentations
the Whitehead graph and the star graph are the same, since there are no
proper powers among the relators.

Consider a presentation P represented by the interval Ip of Figure 7 with any
orientation on the edges. Assume k > 2 and n > 3k.

k+I k+2 n n+l 1 k-1F
1 2 3 n-k n-k+l n-k+2 n-k+3 n n+1

Figure VI.7. An interval presentation

Rosebrock has shown in [Ro91] that all cycles z E W2 of these presentations
have length at least four. This means that these presentations satisfy the
small cancellation conditions C(4), T(4) (see [LySc77]). In [Ro91] there is
also a careful analysis of all cycles of length four, which is necessary in order
to prove weight- or cycletest conditions. In any interval presentation with at
least two relators, there is for any i E {2, ... , n} a cycle of length four passing
through the vertices e;_lx,r(,_l), -xi, -eixr(,), +x; of the stargraph, in that
order (see Figure 8). Call such a cycle an ordinary cycle.

it(i -1) ii(i)

it(i-1) lt(i)

i+1

i+1

Figure VI.8. Ordinary cycle with et-1 = +1, e, = -1.

Theorem 5.5 If n > 4k and k > 2, then, for any orientation of the edges of
Ip, P satisfies the weight test.

Proof: In [Ro91] it is shown that in this case all cycles of length four are
ordinary. Then give weights according to Figure 9, where az = v/(n + 2 - i)
and v > 0 is a fixed real number which will be chosen later.
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A

1/2 + ai 1/2 - ai+1

i+1

1/2 + ai 1/2 - ai1

Figure VI.9. Weights for the relator Ri

Then
g(y) = 4 * 1/2 + 2ai - 2ai+1 < 2,

7ERi

since ai < ai+1. So (4) is satisfied. Now consider the ordinary cycle z of
Figure 8. Its weight is 2, and, since all cycles of length four are ordinary, (5)
is satisfied for cycles of length less than five. If z is a cycle of length jzj > 5
and we choose v = 1/10 then:

g(z) > lzl(1/2 - a.+1) > 5(1/2 - v/(n + 2 - (n + 1)) = 5/2 - 5v = 2

This is true since 1/2 - a,,+1 is the smallest weight defined. This proves (5).

It is not difficult to show that even in the case n > 4k - 2, k > 2 these
presentations satisfy the weight test. In this case there are some more cycles
of length four that are not ordinary, but choosing weights with ai = v/(5n-i)
implies that they still satisfy (5).

Theorem 5.6 If n = 4k - 3 and k > 3 then for any orientation of the edges
of Ip, P satisfies the cycletest.

Proof: We give `in general' weights according to Figure 9, where ai = v/(n+
2 - i) with v > 0 is a fixed real number which will be chosen later as above.
Again there are no cycles of length smaller than four. The inequality (6) is
satisfied because of ai < ai+1 and ordinary cycles fulfil (7) as in the previous
proof. There are some more cycles of length four which cause problems like
the cycle z around the vertex E in Figure 10.
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3k

B

C k+2

2 2

3k+ 1 k+2
E

2k+ 1 2k+2

3k+1 k+3
A

3

D

2k+2

Figure VI.10. Non-ordinary cycle of length 4

If we would take the weights as suggested above, then g(z) = 2 + ak+2 +
a2 - a3k+1 - a2k+2 < 2. Observe that there is only some multiple A of v
missing in order to get g(z) > 2, where A is independent of v. But in every
sequence of cycles Z; , where the vertex E occurs as in Figure 10, the cycles
corresponding to the vertices A, B, C, D all have length at least five. So reduce
the weights at every vertex of the set {A, B, C, D} by Wv/4 and add this to
the corresponding corner of the cycle z. Then g(z) > 2. Now each of the
cycles w at the vertices A, B, C or D has weight g(w) = 5/2 - c,,,v, where the
constant c,,, certainly depends on w. Now choose v > 0, such that g(w) > 2
for all possible cycles at all four vertices.

There are several more non-ordinary cycles of length four, but the method
applied above for the cycle of Figure 10 works for all of these. Thereby v has
to be taken as the minimum of all the v which appear in the corresponding
cycles of length four. Cycles of length five or more are shown to satisfy (7)
as in the previous proof.

The following generalization of small cancellation cases that yield a quadratic
isoperimetric inequality is sketched in Gersten [Ge881] and goes back to Gro-
mov [Gr87]. It extends the standard non-metric small cancellation conditions
C(6), C(4)T(4), C(3)T(6) as well as the various non-homogeneous small can-
cellation cases considered by Juhasz [Ju86], [Ju89]. We give a detailed proof
of this result following Gersten's outline. We start with some definitions:

A 2-complex is called piecewise Euclidean (PE) if each of its closed cells has
the metric of a convex polygon in the Euclidean plane and these metrics agree
on the overlaps. Let M be a finite PE 2-disc, i.e., a PE 2-complex that is
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homeomorphic to a 2-dimensional disk. Then it is possible to measure angles
in the corners of 2-cells of M. Let p be an inner vertex of M and let W (µ)
be the sum of the angles that occur around p. Now define the curvature at p:
K(µ) = 21r - W(µ). Let K(M) = max K(µ), where the maximum is taken
over all inner vertices p E M (set K(M) = 0 if M has no inner vertices) and
let 1M be the length of the boundary of M. The following theorem is due to
Aleksandrov and Reshetnyak [Res6l]:

Theorem 5.7 Let M be a PE disc with K(M) < 0, then

a
Area(M) < - (9)

This result is certainly plausible. It gives as an upper estimate the area of an
euclidean disk of the same boundary length.

Addendum:
Let M be a planar, connected, simply connected PE 2-complex (consisting
of PE-disks and arcs where the disks are connected by common points or
along arcs). Define the curvature K(M) (as before) as the maximum of the
curvatures of inner vertices of all the disks in M (or = 0 if M has no inner
vertices). Then, by a simple induction over the number of disks in M, one
can extend (9) to such a PE 2-complex M.

In the following discussion of the classes W and W* of presentations we have
to return to the original (weaker) definitions of a reduced path (or cycle) as a
path (or non-constant closed path), respectively, in which no edge is followed
immediately by its inverse. A diagram will be called reduced if the link of
every vertex corresponds to a reduced path or cycle (in the above sense). Let
KP be the standard 2-complex of the presentation P with stargraph S. (We
assume the relators of P are cyclically reduced.) We now define local small
cancellation conditions on K. Let f : M -3 Kp be a reduced van Kampen
diagram. Assume that M has no inner vertices of valence two. This may
easily be achieved by removing these vertices and connecting the two arcs to
one. Let d(D) be the number of corners of the 2-cell D E M (not counting
corners at deleted inner vertices of valence 2) and d(v) the valence of the
vertex v.

If P satisfies for every such diagram f : M -* KP and every inner 2-cell D E M
one of the following conditions, then P (or Kp) is said to be of type W.

(i) d(D) = 3 d(v) > 6 for all vertices v E 6D

(ii) d(D) = 4
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d(v) 4 for all v E SD or

d(v) > 5 for two v E 6D and d(v) > 4 for one more v E 6D or

d(v) > 6 for one v E 6D and d(v) > 4 for another two v E 6D or

d(v) > 6 for at least two v E 6D

(iii) d(D) = 5

d(v) > 4 for at least two v E 6D or

d(v) > 6 for one v E 6D

(iv) d(D) > 6

(vertices of M where several corners of the same 2-cell D occur count with
multiplicity)

Certainly these conditions may be stated in terms of the presentation P, like
in small cancellation theory. Then we would have to speak of pieces and the
C and T conditions (see [LySc77]). If only one of these conditions holds for
the whole presentation then we are in the standard small cancellation theory.
For example the condition (i) corresponds to the C(3),T(6) case. All the
other non-metric small cancellation conditions also occur in the list.

The above conditions defining the class W can be derived from a single curva-
ture criterion. W is the class of standard 2-complexes for which every reduced
van Kampen diagram (with degree 2 vertices deleted) is non-positively curved
in the following sense: If the corners around an interior vertex v are given
equal angles 21r/d(v), then every interior 2-cell D has the angle sum of a
non-positively curved polygon (< (d(D) - 2)ir). This class is called NPC
(non-positive curvature) by Gromov [Gr87].

Before stating the main theorem of this part, we need a lemma from graph
theory, whose proof is left as an exercise to the reader:
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Lemma 5.8 Let r be a finite graph where each vertex has valence at least
two. Then each reduced path w E r may be completed by a reduced path v E r
to a cycle z = wv. 0

Theorem 5.9 Let P be a finite presentation of type W, where each generator
occurs at least twice in the set of relators and each relator is cyclically reduced.
Let f : M -4 Kp be a reduced van Kampen diagram. Then

F < 812(aM)
(10)

v,3 7

where F is the number of 2-cells of M and l(SM) is the number of boundary 1-
cells of M (i.e., P satisfies a quadratic isoperimetric inequality and therefore
has solvable word problem).

Proof: We first assume that M is a disc, where the boundary is reading
off a cyclically reduced path in the free group on the generators of P. If
M consists of discs Ml, M2 with exactly one boundary point in common (or
connected by some path) and F; < i = 1, 2, then F = Fl + F2 <
41(l(oMl)) + ID(l(SM2)) < 4)(l(8M)) for fi(x) = 8x2/(f1r). The result for
arbitrary van Kampen diagrams follows by induction.

Now remove all interior vertices of valence two, and call the resulting diagram
again M. There are no vertices of valence one because P is cyclically reduced.
Then each interior vertex has valence greater or equal to three.

By the assumption that each generator occurs at least twice in the relators
the vertices of S2 have valence > 2. It is easy to show, by applying Lemma
5.8 to the links of the boundary vertices of the diagram M, that one can
extend M to a reduced van Kampen diagram M' over K2 that contains M
in its interior.

Now we define weights g(y) for the corners -y of M' that belong to the links
of vertices of M, in the following way: If u is an inner vertex of M of valence
d(u) = k, then each of the corners -y at u is assigned weight g(y) = 2/k. If y
is a corner of M' incident to a boundary vertex v2 of M, define

g(y) = max{1/3,2/d(v2)}, (11)

where d(vi) is the valence of vi in M'. Then g(c) > 2 for any cycle c E M'.
The conditions of the definition of type W give for all D E M

g(y) < d(D) - 2 (12)
yED



216 Huck/Rosebrock: VI. DIAGRAMS AND DECISION PROBLEMS

For example, if D is of type (ii) and d(ul) > 6, d(ui) > 4, i E {2, 3}, then
(12) may be seen as follows: EYED g('y) < 1 * 2/6 + 2 * 2/4 + 1 * 2/3 = 2 =
d(D) - 2. It is not hard to prove the following curvature formula by using
the Euler-characteristic of M: (We write y -< vi if the corner y occurs at the
vertex v, and SM for the boundary of M)

E E g(y) < l(SM) - 2
vEdM y-<v, y in M

Let T be the number of inner edges of M that have at least one endpoint in
SM, counting those edges twice that have both endpoints in 6M. Then the
curvature formula together with (11) implies

T < 21(SM) - 6. (13)

Now let M* be the dual of M. M* is a connected, simply connected planar
diagram with boundary length 1(SM*) = r. We want to define a PE structure
on M* that realizes each 2-cell D* in M* as a regular d(D*)-gon with each
boundary edge having length one, and realizes each 1-cell that is not in the
boundary of a 2-cell as a line segment of length one (such 1-cells occur in M*
if M contains 1-cells, not in SM, whose endpoints are in SM). This may not
be possible directly, since closed 2-cells of M* may have identifications on the
boundary and, in that case, can not be isometric to a convex euclidean cell.
However, after a suitable (stellar) subdivision, we can provide the subdivided
diagram N* with a PE structure that realizes each original 2-cell D* by a
PE subcomplex that corresponds to a subdivided regular d(D*)-gon of edge
length 1 with the necessary identifications on the boundary (and the curvature
of vertices that are created by the subdivision is 0).

With this PE structure, N* is a connected, simply connected planar PE 2-
complex. We claim that K(N*) < 0. We only have to show that if u* E N*
is an interior vertex and c* the corresponding cycle, then the sum of angles
at c*: W(c*) is > 2ir. This is true if and only if it is true for any interior
vertex of M*. Let D E M be the 2-cell with c* in its interior and boundary
vertices ul,... , ut, which are interior vertices of M. Interpret the weights
above, times 7r, as angles. Then (12) implies:

W(c*) = E (ir - g(y) * 7r) > d(D)7r - ir(d(D) - 2) = 27r
yE D

By the addendum to Theorem 5.7 we get T2/(4ir) > Area(N*). Area(M*) _
Area(N*) where the area of a subdivided 2-cell D* is equal to the area of a
regular d(D*)-gon of edge length 1.

If F* is the number of 2-cells of M*, and A3 = ,r3-14 the area of the equilateral
triangle whose sides are of length 1, then

V - l(SM) = F* <,r 2/(47rA3) = T2/(\7r),
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where V is the number of vertices of M. Let E be the number of edges of
M. Each 2-cell of M has at least 3 boundary edges, so 2E > 3F + l(SM).
The last two inequalities together with the Euler-characteristic of M yield:
F < 2T2 + l(SM) - 2. Now (13) gives the desired result.

There is a dual theorem to the one just stated which is easier to prove.
We omit its proof, it will be published elsewhere. Let P be a presentation
with cyclically reduced relators. Let f : M -> KP be a reduced van Kampen
diagram with inner vertices of valence two deleted. We also assume that P
satisfies the small cancellation condition C(3), i.e., in every such diagram
every 2-cell has at least 3 corners. If P satisfies for every such diagram and
every inner 0-cell v E M one of the following conditions, then P (or KK) is
said to be of type W*.

(i) d(v) = 3, d(D) > 6 for all 2-cells D with v E SD.

(ii) d(v) = 4

d(D) > 4 for all 2-cells D with v E SD or

d(D) > 5 for two
v E SD or

d(D) > 6 for one
with v E SD or

d(D) > 6 for two

(iii) d(v) = 5

d(D) > 4 for two

d(D) > 6 for one

(iv) d(v) > 6

2-cells D and d(D) > 4 for another D with

2-cell D and d(D) > 4 for two further 2-cells D

2-cells D with v E SD

2-cells D with v E SD or

2-cell D with v E SD

The following theorem is due to Huck/Rosebrock:

Theorem 5.10 Let P be a finite C(3) presentation of type W*, where each
relator is cyclically reduced. Let f : M -4 Kp be a reduced van Kampen dia-
gram with F 2-cells. Then

F <
(JM)

(14)

At last, we want to give an example of a class of presentations, that satisfy
the weight test in its weak form as defined for example in Chapter V (i.e.,
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inequality (4) is not strict), but do not have a quadratic isoperimetric inequal-
ity. The weights will be certainly given in a non-uniform way, a generalization
of the last two theorems will not work by leaving the uniform condition away.

Consider the presentation Bk,I = < x, y I yxky-1 = x1 > of the Baumslag-
Solitar group for k * 1 # 0 and ski # 111. Gersten shows in [Ge911], that this
group has no polynomial isoperimetric inequality. But there are weights, such
that the weight test of Chapter V is satisfied: If ly is an are in S9 = W. that
goes from a vertex ±x to a vertex ±y then define its weight g(y) = 1/2. The
remaining edges of Wp all go between +x and -x and get weight g(ry) = 1.
It is easy to see that Bk,l satisfies the non-hyperbolic weight test of Chapter
V with these weights.



Chapter VII

Fox Ideals, N-Torsion and
Applications to Groups and
3-Manifolds

Martin Lustigl

In this chapter, we introduce Fox ideals I,,, (G) for each m > 0 by means
of finitely generated free partial resolutions of the group G, and describe
a practical method for computing I,,, (G) using representations of G. Fox
ideals provide powerful tests for determining the rank of G (for m = 1), the
deficiency of G (m = 2) and the homological dimension of G (m > 2). These
are derived in §§1-2, and some (partly new) applications are given.

H-torsion groups Aim (G), introduced in §3, are the direct analogues of the
Whitehead group Wh(G), with ZG replaced by 7LG/Im(G). In general, how-
ever, A(- (G) turns out to be much richer than Wh(G), and a practical eval-
uation method is described (using again representations of G), which yields
non-trivial values in a large variety of cases. For m = 1, they distinguish
Nielsen equivalence classes of generating systems of G, and hence isotopy
or homeomorphy classes of Heegaard splitting of 3-manifolds (see §4). For
m = 2 (or even m > 2), H-torsion provides a crucial tool for the distinction
of (simple)-homotopy classes of m-dimensional cell complexes (see §5). Here
Fox ideals and H-torsion values are direct and natural generalizations of the
bias modulus and the bias invariant respectively, as introduced in Chapter
III (see 5.4 below).

'supported by a grant from the German-Israeli Foundation for Research and Develop-
ment (G.I.F.)
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Fox ideals and N-torsion and their preliminary versions have been discovered
in different contexts and with varying degree of generality by several authors;
see, for example, [Dy85], [Ho-AnLaMe9l], [Ho-An88], [LuMo9l] or [Me90].
Our treatment here is closest to [Lu912], where the independence from par-
ticular resolutions of G was achieved through matrix representations, and
Im(G) and Nm(G) have been established as group theoretic invariants.

1 Fox ideals

At first reading of this chapter, the reader may try to skip this section (except
1.1 and the statements of 1.4 and 1.7) and read directly §2, where concrete
applications of Fox ideals in dimension m = 1 and m = 2 are given.

1.1 Fox ideals for modules and exact sequences

(a) Let C be a free ZG-module with basis sl, ... , sh and let T be a sub-
module of C. Define the Fox ideal Ic(T) to be the two-sided ideal in
ZG generated by the set

{a; EZG( there

Since Ic(T) is two-sided, it obviously does not depend on the choice of
the basis for C. If T is finitely generated as Z G-module then so is IC(T),
since it suffices to consider those t E T which belong to a generating
system.

(b) Consider any exact sequence

C : C,n-0--4Cm_1 en'-'4 ... 3CO 4Z
of finitely generated free ZG-modules C; for all 0 < i < m. Let Im(C)
be the two-sided ideal Icm(ker(O.. )) C ZG. Im(C) is called the m-th
Fox ideal of C.

(c) For all n E Z, we define the two-sided ideal Im,n(G) C 7LG that is
generated by the ideals Im(C) for all sequences C as in (b) which have
directed Euler characteristic (-1)mx(C) :_ E;"_a(-1)'+m rk(C;) equal
to n.
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1.2 Comments on 1.1

1. For modules T and C as in 1.1 (a) and any ZG-module S C T, one has
Ic(S) C IC(T).

2. There is a close relationship between the Fox ideal and the trace ideal
of the module T (see [Dy85]). Notice that Ic(T) can alternatively be
defined as the smallest ideal (= the intersection of all ideals) I such
that the inclusion T -*C induces the 0-map 7ZG/I ® T -* ZG/I ® C.

3. A partial resolution C of G, as considered in part (b), is given in par-
ticular by any (G, m)-complex K as defined in Chapter III, Definition
1.1, for m > 2. Thus, any such complex K also possesses an m-th Fox
ideal.

4. The existence of such a partial resolution is a non-trivial condition on
G, since all modules C, are finitely generated.

5. At this point, the reader may think of 1.1 (c) as a cheap method of
defining a Fox ideal that depends just on the group and not on a par-
ticular partial resolution or (G, m)-complex. However, it will be shown
below that there is very little difference between the ideals I.,, (G) and
Im(C), for any sequence C with (-1)mX(C) = n. Indeed, for finite
groups they agree: see [Ho-AnLaMe9l], Lemma 3.

1.3 Stabilization Lemma:

Consider any two exact sequences

and

C : Cm 4 Cm_1 ... al4 lip Z

D : Dm L- > Dm,-1 b`-'
3 ... Do L4 Z

as in 1.1 (b). There exist finitely generated free 7LG-modules
Mc, MD, M0,. .. , Mm_1i and exact sequences

CD:

and

DC :

C. ®Mc Mm-1 --21 MO Z

Dm®MD S4 Mm_1 ... b' MO Z'

with the following properties:
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(a) the boundary operator O = d; agrees for all i < m - 1.

(b) C and CD as well as D and DC are pairs of stably isomorphic sequences
(compare Chapter III, Lemma 1.2, or [Co73]). In particular one has

X(C) = X(CD) and x(D) = x(DC),

and, for any choice of preferred bases in C and D, there is a canonical set
of preferred bases in CD and DC. For any Mi, i < m, the bases coming
from C' and from DC agree up to elementary matrix operations.

(c) One has ker(O',,,) = ker(Om) C C,,,, ker(b,,) = ker(8,,,) C Dm. In partic-
ular this gives Im(CD) = Im(C),Im(DC) = Im(D).

Proof: Let us assume by induction on k, 0 < k < m - 1, that Ci = Di = Mi
and Oi=biforalli<k-1.
Define Ck = Ck ®Dk, Ck+l = Ck+i ®Dk and C; = Ci for i > k + 1. Similarily
define Dk = Dk ®Ck, Dk+i = Dk+l ED Ck and D; = Di for i > k + 1. Define
the boundary operators for the new sequences (as is standard for such a sta-
bilization) to be the identity and the 0-map on the two new direct summands
in dimension k + 1 and k respectively, and to agree with the old boundary
operator everywhere else. Then change the preferred basis (if there is any)
of Ck = Ck ® Dk by adding appropriate elements of Ck to the preferred ba-
sis elements of Dk such that the boundary operator O'k on the resulting new
basis elements coincides with the boundary map 6k on the preferred basis of
Dk. Do the analogue with Dk and identify it with Ck according to the newly
obtained bases, thus defining Mk and Ok = dk. This proves claims (a) and (b)
by induction. Since the induction stops for k = m - 1, claim (c) follows from
the observation that the above stabilization step preserves the kernel of the
(k + 1)-th boundary operator.

1.4 Fox ideals and directed Euler characteristics for
groups

Let G be a group of type FPm, that is, G admits a finitely generated free
m-th partial resolution C as in 1.1 (b).

(a) Then there is a lower bound to the directed Euler characteristic
(-l)mX(C) for all such C. The minimum will be denoted by Xm(G) E Z
and called the m-th directed Euler characteristic of G. (See 2.2 and 2.6
below for the group theoretic relevance of Xm(G) for small m.)
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(b) For all n > X,,,(G), one has Im,,,(G) = 7GG. We will call I"m,xm(G) the
m-th Fox ideal of G and denote it by Im(G). (It is easy to see that
10(G) is just the augmentation ideal of G.)

Proof: (a) Let C and D be sequences as in 1.3 and let CD and DC be the cor-

responding sequences derived there. Consider the maps C. $ MC4Mm_1
and Dm ® MD -b 4Mm_1: From the construction in the proof of 1.3, we
see that im(r3'm) = im(8m) ® Mc. By considering the augmentation map
7GG -* Z, we see that im(8'm) can not be generated by less than rk(Mc)
elements. Hence,

(-1)mX(D) = (-1)mX(Dc) > (-1)mX(CD)-rk(Cm) = (-1)mX(C)-rk(Cm).

(b) This is immediate from the definition: If

C: C 4C -4 '-* C 7Gm m_i ... o

is an exact sequence, then so is

C' : Cm a+ C a=-' a' C a° Zm-i ... o

with C;,, = Cm ® ZG, with Ym = am on the first summand and a,, = 0 on
the second. But then definition 1.1 (b) gives Im(C') = ZG. Hence, it follows
from definition 1.1 (c) that Im,,,(G) = ZG for any non-minimal n.

1.5 Open questions:

1. Do there exist C and D, both with minimal directed Euler characteris-
tic, that have distinct Fox ideals:

Im(C) Im(D) ?

2. Does there exist a group G and some partial resolution C as above,
with non-minimal directed Euler characteristic, (-1)mX(C) > Xm(G),
such that

Im(C) 7GG ?

It will follow from 1.7 that examples of partial resolutions answering these
questions in the affirmative will be very hard to verify, if they exist at all.
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1.6 Lemma

Consider the following commutative diagram of ZG-modules:

C

f1ff' M

D

Let C, D be free modules of finite rank with preferred bases, and denote by
[f], [f'], etc. the corresponding ZG-matrices with respect to the preferred
bases. Then

(a) [f'. f] = 1 modulo Ic(ker(8)) C ZG, and

(b) for any two-sided ideal J C ZG, with IC(ker(a)) C J, one has:

[f f'] = 1 modulo J ID(ker(8')) C J J.

Proof: (a) From e f f = a' f = 0 we get f f (c) - c E ker(a) for all
c E C. But ker(O) = 0 mod IC(ker(a)) follows directly from the definition of
Ic(ker(8)) in 1.1 (a).

(b) The implication follows from (a) by the symmetry between C and D.
For the converse implication, observe that a f = 8' implies f'(ker(O')) C
ker(O) and hence f'(ker(8')) = 0 mod J. By assumption, this implies
0 = f f'(ker(O')) = ker(c7) mod J and hence ID(ker(8')) C J.

1.7 Computing Xm(G) through representations

Let R be a commutative ring with 1 # 0, let C be a sequence as in 1.1 (b),
and let p: ZG -* A4 (R) be a representation as (k x k)-matrices over R with
p(l) = 1 and p(Im(C)) = {0}. Then p(Im,.n(G)) = {0} for n = (-1)mX(C),
and C realizes the minimal directed Euler characteristic:

Xm(G) = (-1)mX(C) (and hence Im,.n(G) = Im(G) ).

Proof: Let D be a second sequence as in 1.1 (b), with (-1)mX(D) = n,
and let CD and DC be the corresponding sequences derived in 1.3. Since the
last terms C := Cm ® Mc and D := Dm ® MD of these sequences are both
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free, there exist maps f and f' as in 1.6 (for M = Mm_1). Part (a) of 1.6
gives [f' f] = 1 modulo Im(C) and hence p([f]) p([f']) = 1 (the change
of order is due to the fact that we consider left modules). But in a matrix
ring with commutative entries this implies p([f']) p([f]) = 1. Hence one has
[f f'] = 1 modulo ker(p), which implies (by 1.6 (b)) Im(D) C ker(p). Since
D was chosen arbitrarily with (-1)'nX(D) = n, we obtain Im,n(G) C ker(p).
Thus Xm(G) = (-l)mX(C) follows directly from 1.4 (b), since the assumption
p(l) = 1 implies Im(D) C ker(p) # ZG.

Notice that the statement of 1.7 is still valid if M,N (R) is replaced by any
non-trivial ring with the property that left inverses are also right inverses.

2 Applications of Fox ideals: Tests for the
rank, the deficiency and the homological
dimension of a group

2.1 The classical Fox ideal

Every presentation P = (xl) ... , xn I Rl, R2, ...) of the group G by generators
xj and relators R; gives rise to a canonical partial resolution Cp of G of length
m = 2, which is the cellular chain complex of the universal cover k of the
standard 2-complex K associated to the presentation (see Chapter I, §1.4 (9)).
In particular, the generating system x = {XI, ... , gives rise to a partial
resolution Cx of G of length m = 1, with associated Fox ideal Ix := I,(Cx).
Indeed, this is the classical Fox ideal associated to the presentation P of
G. Ix is more accessible than most of the more general Fox ideals discussed
in the previous section, since P provides a canonical generating system: Ix
is the two-sided ideal generated by the canonical images in ZG of the Fox
derivatives M;/axe, see Chapter II, before Theorem 3.8.

2.2 The rank of G and Xi (G)

For any generating system of cardinality n the number n - 1 is an upper
bound to the 1" directed Euler characteristic of G. Equivalently but more
importantly, the value Xi (G) + 1 is a lower bound to the rank of G, by which
we mean the minimal number of elements needed to generate G. This gives
rise to the following non-trivial test for determining rank(G), which is a direct
consequence of 1.7.
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2.3 A rank test ([Lu912] )

Let G be a group presented by (x1, . . . , xn I R1, R2,. . .). Let ai,j E ZG denote
the canonical images of the Fox derivatives 8Ril8xj E F(xl,... , x, ). If for
some k E N and some commutative ring R with 1 # 0, there exists a ring
homomorphism p : ZG -- with p(l) = 1 and with p(ai,j) = 0 for all
ai,j, then

rank (G) = n.

2.4 Examples for the rank test

There are many large classes of groups where the rank test is applicable, and
where furthermore the rank can not be determined by abelianization of G.
The most fruitful (since technically easiest) method is given by considering
the image of Ix in the abelianization of the group ring ZG (which is totally
different from computing the rank of G/[G, G]). For example:

2.4.1 NEC-groups

Consider a non-Euclidean crystallographic group G with reflections:

G = (ci i ... , Cn I C211 .. Cnj (ClC2)h ) .... (Cn-1, Cn)hn-" (CnC1)hn ).

The rank of such groups has been considered in [KaZi92], and it has been
shown there that for certain values of the hi the rank of G is bounded above
by 2n/3. However, there are many cases left over where the rank has not
been fully determined. Some of them can be treated very easily by the rank
test 2.3:

Proposition If all hi have a common divisor p > 2, then the rank of G is
n. (Notice that rank(G/G') = max(1, n - #{i 11 < i < n, hi odd }).)

Proof: The Fox derivatives ORilOxj as in 2.3 are computed as follows:

1. M2/Ocj = 1 + cj and OcJ2/Oci = 0 if i 0 j.

2. O(cjcj+1)h' /Oci = (1+(cjcj+l)+(cjcj+1)2+...+(cjcj+l)h'-1) (OCjCj+1/8ci)
(here j is understood modulo n).

Thus the map p: ZG -* Z/pZ, cj -+ -1, sends all these Fox derivatives to 0,
which proves rank(G) = n by 2.3.
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2.4.2 Coxeter groups

Let G be a Coxeter group, i.e., a group with presentation

G = (ci, ... , C. I C1, ... a Cn, (c, C7 )hii (1 < i, j < n)),

where some of the hi3 may well be "infinite", i.e., there is no relation (cicj)h`, _
1. The same proof as in 2.4.1 applies to give the following result, for which
we do not know whether there exists another proof.

Proposition If all finite hi, have a common divisor p > 2, then the rank
of G is n.

2.5 The second Fox ideal Ip associated to a group pre-
sentation P

Let us now assume that the presentation P = (x1, ... , xn I R1i R2, ... , R9) of
the group G is finite. Then the associated partial resolution Cp of G of length
m = 2 is finitely generated as required in 1.1 (b), and hence determines a 2nd
Fox ideal Ip := I2(Cp). In general, Ip will be much harder to compute than
I. in 2.1, since the kernel of the second chain map 82 of Cp is precisely the
second homotopy group 7r2(K) of the standard 2-complex K associated to P,
and generators for 7r2 are in general difficult to determine. However, in many
concrete situations there are techniques available, see Chapter V: We will
present below (see 2.7, 5.5 and 5.7) examples where Ip has been computed
(or at least approximated) successfully.

2.6 The deficiency of G and X2 (G)

For any presentation P, as in 2.5, we define the deficiency def(P) of P to be
the number q - n. Notice that some authors define the deficiency as n - q.
We define the deficiency def(G) of G to be the minimum of the def(P) for all
presentations P of G. Notice that the computation of def(G) is in general a
difficult task; see 2.8.

For any presentation P, the number q - n + 1 is an upper bound to the 2nd
directed Euler characteristic of G. Conversely, X2(G) is a lower bound to the
Euler characteristic of any 2-complex K with fundamental group 7r1K = G.
In particular, the value X2(G) - 1 is a lower bound to def (P) for all P
and hence to def (G). This gives rise to the following non-trivial test for
determining def (G), as a direct consequence of 1.7.
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2.7 A deficiency test ([Lu912] )

Let G be a group presented by (x1,... , x I R1,. .. , R9), and let K be the
corresponding standard 2-complex. Let R1, ... , R. denote the natural basis
corresponding to the Ri for the second chain group C1(K) of the universal
covering of K. Let T C C2(K) be a ZG-module that contains ir2K = H2(K),
and let

yl = a1,1R1 + ... + a1,gRq,

y2 = a2,1R1 + ... + a2,gRq,

be generators of T, with aij E ZG. If there exists a ring homomorphism
p: 7LG -+ Mk (R) for k E N and some commutative ring R with 10 0, such
that p(l) = 1 and p(aij) = 0 for all aij, then

def (G) = q - n.

2.8 Efficiency

As stated already in 2.6, the deficiency of a group is not easy to determine:
Of course, every finite presentation P gives an upper bound

def(P) > def(G).

On the other hand, there is the well known homological lower bound for
def (G),

def(G) > s(H2(G)) - rk(H1(G))

(see Chapter IV, §4.2), where s(.) denotes the minimal number of 7L-module
generators and rk(.) the dimension as Q-vector space after tensoring with
Q. A presentation which meets this bound is called efficient, and a group
G with such a presentation is called itself efficient. Until recently, the only
known non-efficient groups were finite [Sw65]. Last year the author was asked
by Pride whether the deficiency test 2.7 could be used to exhibit examples
of non-efficient groups through second Fox ideals. The author suggested a
construction principle for such groups as well as a concrete example. Later
Bak-Pride [BaPr92] used the same ideas to give more examples of similar
sort. The example below is close to the original one:
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2.9 Non-efficient groups without torsion

Let G = (x1i x2 I R) be a 2-generator knot group with non-trivial Alexander
polynomial 0(t), e.g., the figure eight knot group (see [BuZi85]). We may
assume that x1 and x2 are chosen so that the abelianization q: G - (tj-)
maps both x1 and x2 to t, which gives O(t) = ±tkiq(OR/ax;) for some k1, k2 E
Z.

Proposition The group H = G®Z is non-efficient (and obviously torsion-
free).

Proof: The abelianization of H is Z2, and hence rk(Hi (H)) = 2. Knot
complements are K(ir,1)-spaces, and without loss of generality we can assume
that the above presentation of G is the standard presentation corresponding
to a 2-complex K homotopy equivalent to the knot exterior. It follows that
K is aspherical, and hence L = K x S' is aspherical with ir1L = H. Thus
we can compute H2(H) = H2(L) = H2(K) ® (HI(K) 0 HI(S1)) (e.g., see
[GrHa8l, 29.11.1]). But H1(K) = Z, which shows by the Euler characteristic
of K that H2(K) = 0. Thus s(H2(H)) = 1.

On the other hand, we will use the deficiency test 2.7 in order to show
that def(H) = 0: Consider the presentation (x1, x2i x3 I R, S, T) of H with
S = x1x3x11x31 and T = x2x3x21x31, which is the standard 2-complex
corresponding to the 2-skeleton L2 of L = K x S1, where S1 consists of a
single 0-cell and a single 1-cell. From the asphericity of L we deduce that
7r2L2 is generated by the boundary of the 3-cell of L, which is the element
(x3-1)R+(aR/dx1)S+(OR/dx2)T (see also Chapter V, Theorem 3.2). Thus
I2(C(L)) is generated by (x3 - 1), aR/dx1 and aR/dx2. A representation as
in 2.7 is now given by p: 7LH - Z[t,t-1]/(0), with p(x1) = p(x2) = t and
p(x3) = 1.

2.10 A Fox ideal test for the homological dimension
of groups ([Lu912] )

Let G be a group of type FL, and let

C : C. C.. i am ' ... '4 C" -2L+ z
be an exact sequence of finitely generated free 7LG-modules. Assume ker(am) #
0 (otherwise one has hdim(G) < m). Let s1, ... , sh be a basis of the m-th
term Cm, and let y1i y2i ... be ZG-module generators of ker(am): For all y;
there exist expressions

y2 = a1,1s1 + ... + a=,msm
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with aij E ZG. If for some k E N and some commutative ring R with 1 # 0,
there exists a ring homomorphism p: ZG -* N9fk (R), with p(l) = 1 and with
p(aij) = 0 for all ai,1, then

hdim(G) > m + 1.

Proof: Observe first that hdim(G) < m + 1 would imply (by [Br82], p. 203,
Exercise 1) that there exists a resolution D of G of length s < m + 1 with all
terms Di free and finitely generated (since G was assumed to be of type FL).
But the existence of any such resolution D gives immediately It(G) = {0} for
all t > m > s. However, the assumption ker(Om) 0 {0} implies 54 {0}
and hence (by 1.4 (b)) (-1)-X(C) > Xm(G). This contradicts the existence
of the assumed representation p, by 1.7.

3 N-torsion: Basic theory

3.1 The A(-torsion groups Nm(G)

For every group G of type FPm,, we define the m-th A(-torsion group N' (G)
to be the (abelian) "Whitehead type group"

Nm(G) := Ki(ZGIIm(G))l ± G.

Here denotes the first K-group2 from K-theory or simple-homotopy
theory (see [Mi71] or [Co73]), with entries from the quotient ring ZG/IT,(G)
of ZG modulo the m-th Fox ideal Im(G). Thus Nn(G) is the quotient of
K1(ZG/I,n(G)) modulo all elements represented by diagonal matrices with
diagonal entries ±g for some g E G.

Am(G) is called "degenerate", if I,,,(G) = ZG, and in this case we define
formally Nm(G) = {0}.

3.2 Whitehead torsion and JV-torsion

For all m E N, there is a canonical homomorphism

Wh(G) -> jVm(G)

from the Whitehead group Wh(G). This is an immediate consequence of the
functorality of the group Kl (R) for rings R and their homomorphisms.

'We actually use here a slight extension of the classical Kl () in order to include matrices
which are only one-sided invertible.
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3.3 The JV-torsion for a pair of partial resolutions
with preferred bases

For every two exact sequences with preferred bases C, D as in 1.3 with
(-1)mX(C) = (-1)mX(D) = Xm(G), we define an element

N"' (C, D) E All(G)

as follows: Let C°, DC be the complexes with preferred bases derived from
C, D as in the Stabilization Lemma 1.3, and let C, D denote their m-th term
respectively. Consider any 7GG-homomorphism f : C --4 D as in 1.6 (with
Mm-1 =: M). Define Al(C, D) to be the element in Nn(G) represented by
the image of the matrix [f] (with respect to the preferred bases) under the
quotient map 7GG -4 DLG/Im(G).

Notice that Nm (C, D) does not depend on the choice of the map f , since any
other such map differs from f only by elements that are equal to 0 modulo
Im(G). As in standard simple-homotopy theory, it follows that the value of
Nm (C, D) is independent of the particular choice of stabilizations performed
on C and D in order to define C' and DC.

3.4 The cancellation rule

The group structure of Alm (G) yields for any sequences C, D, E as in 3.3:

N'n (C, D) + Nm (D, E) = Arm (C, E).

In particular, if C and D are stably isomorphic with respect to their preferred
bases, one has

A(' (C, D) = 0 and A(' (C, E) = Nm(D, E).

These are direct consequences from the definitions and from the observation
that a simultaneous stabilization for C, D, E can be achieved in three suc-
cessive steps of pairwise stabilizations as in 1.3.

In the next sections, the relevance of Nm-torsion for generating systems of
G (m = 1) and for the (simple-)homotopy type of (G, m)-complexes (m > 2)
will be explained and examples will be given. All of them use a particular
technique for evaluating Nm (G) that we present now.

3.5 Evaluation of N(G) via the determinant

Let R be a commutative ring with unit 10 0, let k E N, and let p: 7GG -*
N, (R) be a ring homomorphism with p(l) = 1 and p(Im) _ {0} C NU (R).
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By the functorality of K1, the map p induces a homomorphism of abelian
groups

Ki (p): K1(7GG/Im) -+ K, (Mk (R)) _* K1(R),

where the last map (an isomorphism !) is induced by the "forgetting the
brackets" map. On K1(R), we have the determinant map det: K1 (R) -a R*
into the multiplicative group of units R* of R. Let r, denote the composite
map

Tp: GL(ZG/Im) definition K1(ZGIIm) K,(p) 4 K1(R) aec
R* .

We define the subgroup T. of R* as the r, image of the subgroup of trivial
units in GL(7GG/Im), i.e., the elements represented by diagonal matrices with
entries in G U -G. Let Nm(p) be the map N(G) -> R*/Tp induced by 7p.

3.6 SNm(G), .Nm(G)* and Nm(G)k

Let SNm (G) C N(G) be the subgroup which consists of all elements
Z E Mm(G) with N(p)(Z) = 0 for any R, k, and p as in 3.5, and denote by
Nm(G)* the quotient

Nr(G)* =Nm(G)ISNm(G)

Similarly, we define, for any fixed k E N and varying R and p, the groups
SAIm (G)k and Nm (G)k = Nm (G) I SNm (G)k. Notice that there is a canonical
quotient Nm(G)* -4 Nm(G)k.

All computations in the groups A(- (G) known to the author have been per-
formed using some quotient Nm(G)k of Nm(G). We know of no group G
where the kernel SNm(G) of the map Nm(G) -3 Nm(G)* is proven to be
non-trivial for some m E N with Im(G) # 0.

3.7 A direct sum formula for free products

We now state a formula for free products G = G1 * G2 that describes Mm (G) *
in terms of Arm (G1)* and Nm(G2)*. It has been proved in [LuMo932] (stated
there for m = 1, but the proof for m > 2 is exactly the same). The proof
is based on a direct sum formula for "pure" rings due to Casson, but is too
technical to be reproduced here.

The theorem below should be thought of as analogue to the celebrated free
product formula for Whitehead groups:

Wh(G1 * G2) = Wh(G1) ® Wh(G2)
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see [St65]. Unfortunately, the groups Arm(G) are less well behaved, as is
indicated for m = 2 in [Si77], p.138 (partially reproduced in Chapter XII, §3,
(17)). In [LuMo932], §3, an example is given with Ai'(Gl * G2) = {0}, while
both JV'(Gi) and A11(G2) are non-trivial.

This difficulty is why we pass over to coefficients in a field .fl, thus obtaining
torsion groups Nm (G; .fl) and Aim (G; A) * defined in complete analogy to 3.1
and 3.6, with ZG replaced by fl[G].

Theorem Let . be a field, m E N, and consider a free product of groups
Gl * G2. If both Nm (Gl; R)* and .Nm (G2i Si)* are non-degenerate, then the
natural embeddings Gl C Gi * G2, G2 C Gi * G2 induce an isomorphism

Nm(Gi;.q)* ®Nm(G2;A) )Nm(Gl * G2;V .

Using deep results of Waldhausen (see [Wa78]), it seems possible to derive the
same statement for Nm(.) rather than Nm(.)*, but for all practical purposes
this does not make a difference since the part S.Nm (G) of Nm (G) is beyond
the reach of our computational abilities.

Remark Notice that the non-degeneracy of both Nm (Gl; A)* and Nm (G2 i S)*
implies that the directed Euler characteristic of a free product is additive:

Xm(Gi * G2) = Xm(Gi) + xm(G2) - (-l)'-

In general, one only has

Xm(Gi * G2) Xm(Gi) + Xm(G2) - (-l)'-

Examples with strict inequality are given in [HoLuMe85] for m = 2.

4 Nl (G), Nielsen equivalence of generating
systems and Heegaard splittings

4.1 Nielsen equivalence of generating systems

Let G be a finitely generated group with presentation

G = (XIi...,xn I R1,R2,...)I

and let y = {yl, ... , y,,} be another generating system for G. Denote by F(X)
and F(Y) the free groups on bases X = {X1,.. . , X, } and Y = {Y1,... , Yn}



234 Lustig: VII. FOX IDEALS, N-TORSION, AND APPLICATIONS

respectively, and let /3x, /3y be the canonical epimorphisms F(X) -+ G,
F(Y) -+ G given by /3x(Xt) = xi and /3y(YY) = yj.

Definition The systems x and y are said to be Nielsen equivalent if there
is an isomorphism 0: F(Y) -+ F(X) such that 6x0 = /3y.

As in 2.1, we denote by O/OXi: ZF(X) -* ZF(X) the i-th Fox derivative
of the integral group ring ZF(X). By a slight abuse of notation, we will
denote any group homomorphism F --> G and its Z-linear extension to a
ring homomorphism ZF -4 ZG by the same symbol. Similarly, we will not
distinguish notationally between any ring homomorphism A -+ B and the
induced homomorphism on the (m x m)-matrix rings M,, (A) -* Mm (B).

4.2 The torsion H(x, y) defined by a pair of generating
systems

As described in 2.1, to every generating system x = {x1, ... , x,,} of G there
is associated the canonical partial resolution

Cx: ZG Z

of G of length m = 1, with O1(dxi) = xi - 1 for all i = 1, ... , n. Thus, to
every pair of generating systems x and y, there is defined in 3.3 a torsion
value N(y, x) := Nl (Cy, Cx) E AP (G), provided that the directed Euler
characteristic of Cx and of Cy is minimal. To any choice of expressions
yj = wj (x) of the yj as words in the xi corresponds the map

-4 ZG{dxl,...,dx.}, dyi -+ EQx(awa(X)la(X4)dxi
i

which commutes with the first boundary operators (by the chain rule for
Fox derivatives, see [BuZi85], Chapter 9 B). It follows directly from 3.3
that the element N(y, x) is represented by the matrix of Fox derivatives
px (Owl (X) /OX i );,i .

4.3 .IV torsion as an invariant of Nielsen equivalence

The element N(y, x) E N1(G) depends only on the Nielsen equivalence classes
of x and y. In particular, .(y, x) # 0 implies that x and y are not Nielsen
equivalent.

This follows directly from the fact that distinct bases of a free group differ
by finite sequences of elementary Nielsen operations, which in turn give rise
to elementary ZG-matrices. These are mapped to 0 in M(G), by definition
of the functor For more details, see [LuMo91] or [LuMo932].
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4.4 How to show JV (x, y) # 0 in practice

For this purpose one needs the following data:

1. A presentation (x1 i ... , xn I R1) R2,. .., R.) of G.

2. Expressions yj = wa(x) of the yj as words in the x;.
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One then computes the Fox derivatives 8Rh/BXt, 8Y;/8X; and their /3x-
images in ZG. Last one searches for commutative rings R with unit 1 0 E R
and representations p: 7LG/I,,, -4 Mk(R), with p(l) = 1 and k E N, such that
the following conditions are satisfied:

(a) p(l3x(8Rh/8X;)) = 0 E NU(R) for all i,h, and

(b) det p(/32,(8Y /8X;)) is not contained in the multiplicative subgroup of
R* generated by all det p(±xz).

4.5 Examples

Applications of the method summarized in 4.4 can be found in [LuMo92,
LuMo931, LuMo932, Lu911] for k = 1 (mostly 3-manifold groups), in [LuMo9l,
Lu911], for k = 2 (Fuchsian groups), in [Le90] (non-tameness of E. Stohr's
automorphism of F/[F, F"j) for k = 3 and in [MoSh93] for k = 4 (non-tame
automorphisms of extensions of Burnside groups). We show below in detail
some of the results:

4.5.1 Free products of cyclics (from [Lu911])

Let G be a free product of finite cyclic groups:

= S1i...,Sn S1 ...... S'YnaG ( I 1
) .

Then two generating systems x = { si' , ... , sn° } and y = Is,, ... , sn^ } of G
are Nielsen equivalent if and only if

u;= ±v;mod-y;

for all i = 1, ... , n.

(Note that by Grushko's theorem all generating systems of cardinality n for
G are Nielsen equivalent to a system of the type given above for x and y).
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Proof: For any generating system x = {x1 x = sn" }, the group G
admits a presentation G = (x1,. .. , x, xi' , ... , x'y,^ ). Thus we may assume
without loss of generality that ui = 1 for i = 1, .. , n. We then apply 4.4 and
evaluate with respect to the quotient q: ZG -> Z[G/G9. We compute easily:

(1) The matrix (q o /33(oXj'/OXi))1< ,i<n is a diagonal matrix with i-th
entry

z; := 1+s1+...+s -1

(2) For the k-th relation rk = xkk, the image of the Fox derivative
q o ,(3,(ark/OXi) is 0 (i k) or Sk := 1 + Sk + ... + ski-1 (i = k). We
define

p: 7LG - 7G[G1G91(Sl, ... , Sn)

and observe that, for all S E ZG, the equation p(() = 0 implies
q(()'flk=1,...,n(sk-1) = 0. In particular, determines
p(()forall(EZG.

From (2), we compute

/detq((0.(aX''/C7Xi))1<,j,i<n) = z1z2... zn,

and hence

II (sk - 1) det p((Om(,9Xj'/aXi))1<j,i<n) = II (skk-').

On the other hand, for all g E G one has q(±g) = fsi ' ... sn ° for some
Mk E Z/ykZ, and hence

(Sk q(±g) = ±Si ' ... Sn ^ 11 (Sk - 1).

The right side of this equation is a sum of elements of q(G) U -q(G), where
each sk occurs only with exponents Mk or Mk + 1 modulo ryk. If this equals

svk-' then Vk E 1, 0, -1 C Z Z for all k = 1,... , n. The case
vk = 0 is excluded by the hypothesis that y generates G.

The converse implication in the statement of 4.5.1 is obvious.

4.5.2 (Finite) quotients of free products of cyclics (from [Lu911])

Nielsen inequivalent generating system x and y, as given in 4.5.1, map to
Nielsen inequivalent systems under the quotient maps
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(a) G -4 GIG" =: H (G" is the second commutator subgroup [G', G']), and

(b) G-+H/{gp[gEH'}=:Jpforanyinteger p>2.

Proof: To prove (a), we modify the preceding proof by considering additional
relators of type r' := [g, h] (= ghg lh-1), with g, h E G': The chain rule for
Fox derivatives gives

,3x(a[v(x1i ... , w(xl,... ,

/3 ((1 - w)19v(x1 i ... , X,)/axi + (v - 1)aw(x1,... , x")axi),
but this mapped to 0 by q: 7LG -> 7L[G/GJ if Qx(v), 02(w) E C.

For (b), we also have to take into account relators of type r" = gp for g E H':
Replacing the quotient q by qp: 7LG -* (7L/pZ)[G/G'] doesn't affect the proof
of 4.5.1, and this yields in addition that

,33(aw(x1,...,xrz)plax?) =)3,((l +w+... +wp-1)aw(xl,...,x,,,)laxi)

is also mapped to 0 for all /3 (w) E C.

Notice that the groups Jp in 4.5.2 (b) are finite [Lu911] and hence remarkably
close to the groups

G/G' = (s1 I si') ® ... ® (s,, I sl,°)

In contrast to 4.5.2, one observes easily that the direct sum GIG' possesses
only one Nielsen equivalence class of generating systems of cardinality n,
unless the y1, ... , y,, are multiples of a common prime.

4.5.3 Fuchsian groups (see [LuMo9l, Lu911] )

Let G be a Fuchsian group,

G = (51, ... , Sm, all bl, ... , a9, b9 I s?1, ... , Sm , SIS2 ... sm[al, b1] ... [ag, b9])

with m > 4 or g > 1, and with all yi > 3. Assume further that for m = 4
and g = 0 at most one of the yi equals 3, 4 or 6. Two generating systems of
G,

u= {s"' s"-' s'j+' s"^' a b a b}1 ,..., j-1 , 9+1,..., m, 1, 1,..., 9, 9}

and

V1 bk-1 Vk+1 v,,,V - {S1 ,...,Sk-1,Sk+1,...,Sm ,a1,bl,...,a9 b9

with ui, vi E Z/'yiZ and gcd (ui, yi) = gcd (vi, yi) = 1, are Nielsen equivalent
if and only if
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(1) ui = ±vi mod yi for i # j, k and

(2) vj = ±1 mod yj and Uk = ±1 mod yk if j # k.

Proof: We indicate here only the proof for the easier case (see [LuMo9l])
with odd and pairwise relatively prime yi. The general case [Lu911] requires
rather intricate evaluation considerations.

We first assume that all ui = 1. From the last relation in the given presenta-
tion of G, we see that for all values of j the generating systems u are Nielsen
equivalent, and hence we can assume j = k. A system of defining relators
with respect to the generating system u are given by all s7' with i # j and
by (sls2 ... sj_1sj+1 ... S. [a,, b1] ... [a9, b9])7i. Thus all Fox derivatives of the
relators are multiples of the expressions Si := 1 + si + . . . + s7'1. The matrix
of Fox derivatives [8v/8u] of the generating system v with respect to u is a
diagonal matrix with Zi := 1 + si +... + s;'-1 as i-th entry.

Every Fuchsian group has a faithful representation into PSL2(C), which lifts
to a faithful representation p: ZG -a SL2(C) if all yk are odd. Since every
Sk is mapped to an elliptic element, p(sk) is conjugate to a diagonal matrix
with diagonal entries (i and Ca 1 for Sk = -ei"/yk. Thus one has immediately
p(Sk) = 0 for all k. Since the determinant of every ±g E G is 1, it follows that
the determinant of p([au/8v]) is equal to JV(p)(v, u). One computes that

N(p)N(v, u) = fl 11 - S;' 12/I1 -
(p2.

i0i

Hence, for generating systems u without the hypothesis ui = 1 for all i we
derive from the cancellation rule 3.4 that, defining formally uj = vk = 1,

m

N(p)N(v, u) = I1 - Si I2/I1 - ; I2.
4=1

The result follows from some number theoretic considerations (see Lemma
1.9 of [LuMo9l]).

4.6 Applications to Heegaard splitting of 3-manifolds

The concept of a Heegaard splitting of a 3-manifold M3 will be introduced in
Chapter VIII, §1.1. It consists in describing M3 as the union of two handle-
bodies along their boundaries. Any such handlebody of genus g > 1, or, more
precisely, the isotopy class of its embedding into M3, defines a surjection of
a free group F9 - ir1M3, and hence a Nielsen equivalence class of generating
system of ir1 M3. Thus it is natural to use N1 (G) for G = ir1 M3 in order to
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distinguish isotopy classes of minimal Heegaard splittings of M3. Note that
this was the motivation why N-torsion has been introduced in the first place
(see [LuMo91]). Previously, non-isotopic (or non-homeomorphic) Heegaard
splittings could be exhibited only for genus 2 (see [Zi88] for a survey of the
state of the art at that time). We now describe some of the results on minimal
Heegaard splitting to be found in the author's joint work with Moriah.

4.6.1 Seifert fibre spaces

Let M be a Seifert fibered 3-manifold that is orientable and has orientable
base surface. Such a manifold is characterized by a system of invariants
{g, e, (a1,)31),.. . , (a.m"3.) }, see [Se33]. A particular family of vertical Hee-
gaard splittings E{io, ... , ij } of M, which goes back to work of Boileau and
Zieschang, is described in [LuMo9l] (recent work of Scharlemann and Schul-
tens indicates that for almost all M every Heegaard splitting is isotopic to a
vertical one). The first handlebody of E{io, ... , ij }, 1 < j < m - 1, is the
regular neighborhood of the graph which consists of (1) the exceptional fibers
with indices io, ... , ij, (2) horizontal curves qk (i.e., curves which inject into
the base surface), where each qk surrounds precisely one of the remaining
exceptional fibers, except for one such fibre, and (3) horizontal arcs which
connect the above curves; see Figure 1.

xk = exceptional fibre ak = connecting arc

qk = horizontal curve a., b. = surface generators

Figure VII.1.
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The second handlebody of is isotopic to the first handlebody
of E{ 1, ... , m}\{io,... , ij}, and in particular these two splittings are iso-
topic. Furthermore, if (3i = ±1 mod ai, then the i-th exceptional fibre can be
switched by an isotopy to the curve qi, and conversely.

Theorem (see [LuMo9l], [Lu911]) Let m > 4 or g > 1, and let a, > 3
for all i = 1, ... , m. Assume furthermore that for m = 4 and g = 0 at most
one of the a, equals 3, .4 or 6. Then E{io,... , i3 } is isotopic to E{ko,... , k,.} if
and only if {io,... , ij} agrees with {k0,... , k,.} or its complement { 1, ... , m}-
{ko, . . . , k,.}, up to those indices i with Seifert invariants 6i = ±1 mod a,.

Proof: (sketched, see [LuMo9l]) The fundamental group of M quotients
(modulo the conjugacy class represented by any regular fiber) to a Fuchsian
group G as considered in 4.5.3, with 'yi = ai. Here the homotopy class of qi
maps to the element si, and that of the i-th exceptional fibre maps to s,',
with vi = fl 1 mod -yi. Hence the first handlebody of E{io, ... , ij } determines
the Nielsen equivalence class of the generating system

Q+o Q+1 P.,
Sio ,Sil ,...,Sid ,S1,,S121...ISlm-,-21

where {i0,. .. , ij} U {lo, ... lm_j_2} The second handlebody
determines the generating system

/3,a oil a1m_1_2
Slo , Sti , ... , S' Sil, Sit, ... , Sid

The claim follows now directly from 4.5.3. 0

4.6.2 A general criterion based on the Burau representation of
braids

We will now consider 3-manifolds M given through surgery on a knot K.
The results on Heegaard splittings of M imply analogous results on tunnel
systems of K, but for simplicity of the presentation we ignore those here and
refer the reader to [LuMo931]. For the same reason, we neglect the obvious
generalization to the case where K is a link (see [LuMo931]).

Let K be any knot in R3, with a projection as 2n-plat: K is obtained from a
2n-braid B by connecting up the n pairs of neighboring strands on the top and
those on the bottom by horizontal arcs, the upper and the lower bridges. Let
R2 be any horizontal plane which intersects B (transversely), and compactify
R3 to S3 as well as R2 to S2 by adding a point "at infinity". Then S2 cuts
S3 - int(N(K)) in an upper and a lower part Htop and Hbt, and both are
easily seen to be handlebodies, see Figure 2. They give rise to an upper and
a lower Heegaard splitting Etop = {Ht0P, Hit} and Erbt = {Htop, Hit} of M
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(obtained from surgery on K), since Heap := Htop U N and Hit := Haot U N
are also handlebodies, for any solid torus N glued to S3 - int(N(K)) along
their boundaries. We show below that Etop and Ebot are non-isotopic and
even non-homeomorphic (i.e., there is no homeomorphisms of M which maps
Etop to E,,,t) for a large variety of 3-manifolds M as above.

Htop

Hbot

Figure VII.2.

Consider the Burau representation of B, i.e., the image under the map
ZF(al, ... , a2,,) -+ Z[(tl-)] , ai -+ t, of the matrix of Fox derivatives
(ab;/aa;),,,, where {ai, . . . , a2n} and {bi, ... , b2rz} are generating systems of
the free group 7ri(1R3 -4 B). Here b is obtained from B by adding infinite
trivial braids to B at the top and the bottom, and the ai correspond to these
bottom strands, whereas the bi correspond to the top stands (alternatively,
see [BuZi85], pp.158). Let p(B) denote the image of the Burau representation
of B, when t is evaluated at -1. Let a be the gcd of the entries of the Matrix
L o p(B) o M, and let Q be the determinant of the matrix N o p(B) o M, for
L, M and N determined as follows: Let L be the (n x 2n)-matrix (aid) with

1 forj=2i-1
aij _ -1 for j = 2i

0 otherwise
let M be the (2n x n)-matrix (aid) with

1 fori=2j-1
aid= 1 fori.=2j

0 otherwise
and let N be the (n x 2n)-matrix (aij) with

J1 forj=2i-1_aid
0 otherwise
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Theorem ([LuMo931]) Let M be a closed 3-manifold obtained by p/q-
surgery on K, with p even.

(1) Then a 1 implies that rank(ir1(M)) and hence the Heegaard genus of
M (i.e., the minimal genus of any Heegaard surface of M) equal n.

(2) If , # ±1 mod a and 2i-1 0 ±1 mod a, then the genus n Heegaard
splittings Et,,p and Ebot of M are non-isotopic.

(3) If ,3 0 f,3-1 mod a and 22(n-1) ±1 mod a, then Et,,p and Ebot of M
are non-homeomorphic.

Proof: We consider the Wirtinger presentation of the knot group G =
7r1(S3 - int(N(K))) associated to the 2n-plat projection of K. To any of
the generators xi (i = 1, ... , n) corresponding to the lower bridges, we for-
mally introduce the inverse generator x;. We can then find a new presentation
based on the 2n generators x1i ... , xn, x...... x,, by successively eliminating
all other Wirtinger generators from the bottom to the top, using the Wirtinger
relations. This inductive procedure gives words w1i ... , wen in the xi, xi for
the top bridge generators and their inverses y1, yi Y2, y21, ... , yn, yn 1. Re-
placing x; by xz 1 hence gives a presentation for the knot group

-1 -1
C* _ (x1, ... , xn I w1 = w2, ... , w2n_1 = w2n).

A similar presentation can be found if one starts with the top generators and
their inverses and eliminates all the other generators successively from the
top to the bottom.

The entries in the evaluated Burau matrix p(B) are now precisely the images
of the Fox derivatives 0wl'/0x=',ek = (-1)k, under the evaluated abelianiza-
tion map q: 7GG - Z[(t I -)]/(t + 1) = Z. A consequence of mapping t to
-1 is that the exponents ek can be suppressed. From the definition of L, M
and N it follows directly that L o p(B) o M is precisely the q-image of the
matrix of Fox derivatives aw2j-1w2i/axi, and that the matrix N o p(B) o M
is the q-image of the matrix of Fox derivatives ayk/axi. Thus, a generates
an ideal in Z which contains q(I1(G)). This proves part (1) of the Theorem,
since G = ir1(M) is obtained from G by adding the relator xi A9, where A is a
certain element in the second commutator subgroup of d, and hence the Fox
derivatives of xiAq have zero q-image for even p (see Remark 5.1 of [LuMo931]
or compare 4.5.2 (a) above).

The hypothesis )3 # ±j3-1 implies that the generating systems x = {x1 i ... , xn }
and y = {y1, ... , yn} are not Nielsen equivalent, since ,3 gives precisely the
image of A((y, x) in (Z/a7G)*/(f1) under the evaluation map induced by q.
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But x and y are generating systems corresponding to Heot and Ht0P respec-
tively. Thus there is no isotopy of M which maps Hr,& to Ht,,p. Hence, for
part (2), it suffices to show that Ha,,t can not be isotoped to Hb.t. An in-
genious computation entirely due to my coauthor ([LuMo931], Proposition
5.2) shows that, for a suitable generating system z in the Nielsen equivalence
class determined by HLt, the image of N(z, x) in (Z/aZ)*/(fl) under the
evaluation map induced by q is equal to 21-" mod a.

The arguments for part (3) are slightly more complicated, but coincide with
those in the proof of Theorem 0.3 of [LuMo931] and are omitted here.

4.6.3 Applications to 2-bridge knots and Montesinos knots

Let K = be a 2-bridge knot in standard projection as 4-plat, see
Figure 3. The invariants a and 3 agree precisely with the numbers derived
in 4.6.2 from the plat projection (see [LuMo931], §3).

u
a, R

a1

a3

- am+1

where a / (3 = a1 + 1/(a2 + 1/(a3 + ...))

and at denotes at right-hand half twists

Figure VII.3.

Thus we obtain as direct consequence of 4.6.2 a new proof of the following:
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Corollary Let M be obtained from the 2-bridge knot K(a, 0) by p/q-
surgery with even p. If Q 34 ±1 mod a and 2n-1 54 ±1 mod a, then M admits
at least two non-isotopic Heegaard splitting Etop and E ,t. If furthermore
a # f/3-1 mod a and 22(n-1) 54 ±1 mod a, then Et,,p and Etpt are even
non-homeomorphic.

Next, we consider Montesinos knots K = .M (e; (al 61), ... , (ag 3 )), see
Figure 4 (a) and [BuZi85], Chapter 12. It has been shown in [BoZi85] that
K has a projection as 2g-plat, see Figure 4 (b). In [LuMo92] for each g-
tuple (El, ... , cg) E {1, ,1)} such a projection P(El,... , eg) has
been exhibited, with corresponding Heegaard splittings E0,, (El, ... , Eg) and
Eb.t(El, ... , Eg). As a consequence of the Theorem in 4.6.2, one can compute
that many of them are non-homeomorphic, see Theorem D of [LuMo92]. In
particular, this yields:

Theorem ([LuMo92]) Let K C S3 be the Montesinos knot

such that all ,3; are mutually distinct odd primes, and let

gcd(al,... , a9) > 22g-1Nl ... gg)2 .

Let M be the closed 3-manifold obtained from S3 by m/n-surgery on K, where
m is even. Then the Heegaard splittings Ey(El, ... , Eg) are mutually non-
homeomorphic for all g-tuples (El, ... , E9) Ell, -11-9\1±(1,. .. ,1)}.

Figure VII.4.
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Corollary (see [LuMo92]) For each g > 3, there exist infinitely many hy-
perbolic 3-manifolds of genus g with at least 29-2 pairwise non-homeomorphic
minimal Heegaard splittings.

A similar statement for Seifert fibered rather than hyperbolic 3-manifolds can
be derived as in 4.6.1 (see [LuMo9l], §0, after Theorem 2).

5 N-torsion as generalization of the bias and
(simple)-homotopy of (G, m)-complexes

5.1 The topological problem

Question Let K, L be two (finite) m-dimensional cell complexes with
isomorphic fundamental groups, equal Euler characteristics and vanishing
homotopy groups 7ri(K) = 7ri(L) = 0 for i = 2, ... , m - 1. Are K and L
homotopy equivalent or even simple-homotopy equivalent?

This topological question translates directly into the algebraic setting of sec-
tion 3: The complexes K, L are (G, m)-complexes for some identification
isomorphisms iK: 7r1K -+ G, iL: 7r1L -+ G, and hence the augmented chain
complexes C := C(K), D := C(L) associated to the universal coverings of
K, L respectively are partial resolutions of G with preferred bases as in 3.3.
In particular, one obtains a torsion value Nm(C, D) E Arm(G) associated to
K and L, which is crucial for the above simple-homotopy question (see 5.2
below).

Warning The identifications ik: 7r1K -4 G and iL: 7r1L -+ G are by no
means canonical. Different identifications will, in general, give distinct values
Afm(C,D) ENm(G) !!!

As a consequence one has to consider for the above problem all different
possible identifications iK, iL.

We also want to draw the reader's attention immediately to the second major
difficulty in evaluating Nm(C, D); unlike the case m = 1 treated in section
4, the data given for m > 2 in general do not include a generating system
of 7rm(K) = or 7rm(L) = Fortunately, in the case m = 2,
which is of greatest interest to us, there are a variety of techniques available
which deal with that problem for important classes of group presentations;
see Chapter V. An alternative approach is described in 5.4 below.
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5.2 Al-torsion test for simple-homotopy equivalence

Let K, L be finite CW-complexes as in 5.1. If

Hm(C, D) # 0 E A(m(G),

then there exists no simple-homotopy equivalence h: K -+ L with induced
map h. = iL1iK on the fundamental groups of K, L.

Proof: By construction, there exist chain isomorphisms with trivial White-
head torsion between C and CD as well as between D and DC. So any
simple-homotopy equivalence h: K -4 L would give rise to a simple-homotopy
equivalence h': CD -+ DC. By the exactness of DC the map h' then were
chain homotopic (see [Co73], pp. 72) to a 7LG-chain map g: CD -4 DC which
is the identity on all M, (for 0 < i < m - 1), whereas on the m-th term it
determines a map f as in 3.3. Here [f] would represent the trivial element in
Wh(G), with Hm(C, D) = 0 E Alm(G) as an immediate consequence of 3.2.

0

5.3 A homotopy equivalence test

Let Dm (G) denote the quotient of Arm(G) modulo the canonical image of
Wh(G) as in 3.2. Such a group was first considered by Dyer in [Dy85].

Corollary If, in the situation of 5.2, the image of IVm (C, D) is non-zero
in Dm(G), then there exists no homotopy equivalence h: K -4 L with induced
map h. = iiliK on the fundamental groups.

5.4 Relation between N-torsion and bias

As described in 3.5, the torsion group Arm(G) is usually evaluated through
representations p: 7LG - Mk(R) with p(l) = 1 and p(Im) = {0} C Mk(R).
A particular such evaluation is obtained by considering the image (q) C Z of
the Fox ideal Im (G) under the augmentation homomorphism 7LG -+ 7L and
defining p to be the resulting map ZG -4 Z/qZ (= Ml (7L/q7L) ). If q ¢ 1,
it follows directly from the definitions that the induced map H(p) as in 3.5
maps Hm(C,D) precisely to the bias b(a) E (7L/qZ)*/{fl} as defined in
Chapter III, Definition 1.7.

This observation suggests a viewpoint which has been particularly advocated
in [Ho-AnLaMe9l]: Rather than working with Hm(G), which corresponds
geometrically to the universal covering, or with the classical bias, which cor-
responds to the base complex, it might be useful to consider intermediate
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(regular) coverings. Of course, these correspond to quotients ZG -> 7Z[G/N]
and hence can be viewed as the first step of an evaluation of N' (G) (followed
for example by a matrix representation p of Z [GIN] as above). However, these
particular quotients of ZG have the advantage over arbitrary algebraic quo-
tients that they come with a canonical bias ideal 3 I,,,(G, N) in ZG which
always contains the Fox ideal Im(G), but may be in practice easier to com-
pute (e.g., see [Me90]). Here I,,, (G, N) is defined as the Fox ideal (in the sense
of 1.1 (a)) associated to the m-th homology group of that covering, under-
stood as submodule of the m-th chain group. The advantage of this approach
is that module generators for H,,, (and hence ideal generators for I,,, (G, N) )
may be found for suitable intermediate coverings by geometric arguments.

5.5 Remainder (see [Co73])

For m > 3, there is a 1-1 relation between the topology and the algebra in
5.1. More precisely:

(a) Complexes K and L as in 5.1 are homotopy equivalent if and only
if there are identifications iK, iL and 7GG-chain maps f : C -* D ,

g: D -+ C such that the compositions are chain homotopic to the
identity. K and L are simple-homotopy equivalent if and only if there
exist such f, g with r(f) = T(g) = 0 E Wh(G).

(b) To any partial resolution C with preferred bases as in 3.3, there exists a
(G, m)-complex K with augmented chain complex C := C(K). In par-
ticular, every torsion value r E Wh(G) is realizable by some homotopy
equivalence of (G, m)-complexes h: K -4 L.

For m = 2, part (a) is correct, but (b) fails in general. The reason is that at-
taching 2-cells has a direct influence on the fundamental group and can hence
not be done freely for the purpose of creating distinct simple-homotopy types.
Indeed, it had been open until recently, whether homotopy type and simple-
homotopy type agree for 2-dimensional complexes. The first counterexamples
were given in [Lu911] and [Me90].

3Notice that bias ideals have been defined in [Ho-AnLaMe9l] in a somewhat more
restrictive way.
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5.6 2-Complexes that are homotopy equivalent but
not simple-homotopy equivalent

The simplest known examples of this kind (see [Lu911]) are the standard
2-complexes for the presentations

K : (x, y, z j y3,
yx10y'x-5,

[x', z])

L : (x, y, z I y3,
yxloy-lx-s x14zx14z-1x-7zx-21z-1)

A homotopy equivalence is easy to find. In order to show that there exists no
simple-homotopy equivalence, Theorem 5.2 was used in [Lu911] (where the
invariant N2(G) is yet in a slightly less formalized form). The evaluation of
N2 (C, D) was performed by factoring the group N2 (G) via the representation

ZG - Z/7Z[G/(x7, y, z)] = Z/7Z[(,3 I a5)],

which maps A12(G) to Wh(Z/7Z[(,3/35)]) and A 2(C, D) to the well known
non-zero "Kaplansky unit" 1 +,13 - 03. For more detail, see [Lu911], §2.

In [Me90] a more general, rather elaborate technique is described how to
produce for any given torsion value T E Wh(G) (G finitely presented) pairs
of finite homotopy equivalent 2-complexes K, L with

7r1K = 7r1L = G * (Z/2Z ® Z/4Z) * ... * (Z/2Z ED Z/4Z),

and a homotopy equivalence f : K - L which realizes r. In certain cases T
cannot be realized by any self-equivalence K -+ K, and hence K and L are
not simple-homotopy equivalent (see also Chapter XII, §3.2).

5.7 Simple-homotopy for free products

We now use the direct sum formula 3.7 to compose by wedge product pairs
of homotopy equivalent 2-complexes K, L with the property that for some
field St4

(*) all possible choices for iK and iL, as in 5.1, yield a non-zero torsion value
in JV2(G; A)*.

In particular, K and L are not simple-homotopy equivalent (by 5.2).

'Compare also to Chapter XII, §3.
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Theorem Let Ki, L; (i = 1, ... , n) be 2-complexes such that, for some
permutation Tr: { 1, ... , n} -3 { 1, ... , n} all pairs, K, and are homotopy
equivalent, and that, for every such it, there is at least one pair, K, and L,(;),
with property (*). Assume further that the fundamental groups Gi = 7r1 Ki
are freely indecomposable and not isomorphic to Z. Then the pair of wedge
products, K = K1 V ... V K,, and L = L1 V ... V Ln, also has property M.

Proof: From the assumption that every Gi is freely indecomposable and
different from Z, it follows that all possible identifications

irl(K1V...VK,,)=ir(L1V...VL,,)=:G

come from identifications of the factors through some permutation it. The
claim hence follows directly from the assumption that there is always a pair,
Ki and L,r(i), with property (*), by 3.7 and 5.2.

5.8 Large families of homotopy equivalent but pair-
wise simple-homotopy inequivalent 2-complexes

It follows directly from 5.7 that any wedge product between n copies of
the complex K and m copies of the complex L as defined in 5.6 is simple-
homotopy equivalent to another such wedge product if and only if the numbers
for n and m coincide.

This makes it possible to construct for any q E N compact 2-complexes
K1i ... , K. which are all homotopy equivalent, but no two of them are simple-
homotopy equivalent. The problem of finding an infinite such family seems
to be still open.
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Chapter VIII

(Singular) 3-Manifolds

Cynthia Hog-Angeloni and Allan J. Sieradski

While 2-complexes warrant study for their own complexities, the unresolved
conjectures for 2-complexes described in Chapters X-XII arose from con-
siderations of 2-dimensional spines of manifolds. This chapter investigates
2-complexes that are spines of closed orientable 3-manifolds and special 2-
polyhedra that are spines of singular 3-manifolds.

1 3-Manifolds

This first section presents connections between combinatorial group theory
and closed orientable 3-manifolds. A homotopy classification of these mani-
folds and an investigation of their spines are presented from the viewpoint of
combinatorial squashings for them.

1.1 Representing 3-manifolds

By a 3-manifold, we mean a connected (second countable Hausdorff) space
in which each point has a 3-ball neighborhood. This view of 3-manifolds as
collections of overlapping 3-balls is too unstructured to contribute to their
classification. To better understand 3-manifolds, especially closed orientable
ones, numerous methods of representing them have been developed.

One can represent 3-manifolds as assemblages of basic bounded 3-manifolds
that are glued along their boundary components in regulated manners.

251
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Triangulations The simplest assemblage system is a triangulation, that
is, a finite collection of tetrahedra whose 2-faces are identified in pairs via
simplicial isomorphisms. The triangulability of closed 3-manifolds was es-
tablished by E. Moise [Mo51]. This inherent structure of closed 3-manifolds
contributes indirectly to their classification by offering a starting point for
most other representations of 3-manifolds.

Heegaard Splittings In a closed orientable 3-manifold there are regular
neighborhoods of the 1-skeletons of a triangulation and its dual that are
solid handlebodies sharing the same boundary surface. Any such decomposi-
tion of a 3-manifold M into two genus g handlebodies identified along their
boundaries surfaces is called a Heegaard decomposition or splitting of M of
genus g. In [Zi88], H. Zieschang offers a survey of results on Heegaard split-
tings; Chapter VII describes later work of Lustig and Moriah. Any attempt
to classify 3-manifolds via Heegaard splittings leads to the study of the map-
ping class group (of isotopy classes of homeomorphisms) of closed orientable
surfaces. See J. S. Birman's work [Bi753] and Zieschang's volume [Zi81].

Or one can represent 3-manifolds as special modifications of a basic one.

Surgery A. H. Wallace has shown [Wa60] that each closed orientable 3-
manifold is produced by surgery on a framed link in the 3-sphere S3. The
surgery alters each framed link component according to a rational surgery
coefficient b/a, replacing meridional discs by discs whose attaching loop trav-
els the tubular neighborhood a times longitudinally and b times meridionally.
W. B. R. Lickorish has a proof [Li62] that one can always use a link whose
components are trivial knots and whose framing or surgery coefficient is ±1.
M. Takahashi [Ta91] has shown that +1-surgery on each component suffices.

Branched Coverings According to J. W. Alexander [A120], every closed ori-
entable 3-manifold can be constructed as a branched covering of S3, branched
over a link. It is possible to make the branch set (of points that are not evenly
covered) a knot and the associated unbranched covering of the complement
a 3-fold (irregular) covering, according to independent refinements of H.M.
Hilden [Hi74] and J.M. Montesinos [Mo74]. Montesinos' proof is based upon
a surgery description of the 3-manifold. Hilden's proof [Hi76] is based upon
a Heegaard splitting of the 3-manifold.

A general weakness of these schemes of representing 3-manifolds is non-
uniqueness. There are more recent results that reduce the variables involved
in the representations:

W. P. Thurston established the existence of universal links ,C C S3, which are
defined by the property that every closed orientable 3-manifold is a branched
cover over G C S3. H.M. Hilden, M.T. Lozano, and J.M. Montesinos estab-
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lished the universality of the Whitehead link and the Borromean rings as well
as that of the knot 946 [HiLoMo83] and the figure-eight knot [HiLoMo851].
Each universal link provides the class of all closed oriented 3-manifolds the
structure of a lattice corresponding to the finite index subgroups of the fun-
damental group of that universal link, e.g., see Hempel's article [He90].

D. Cooper and W. P. Thurston [CoTh88] proved that every closed orientable
3-manifold can be triangulated so that the link of each vertex is one of five
possibilities: 8(octahedron), (8(tetrahedron))', (E(8(triangle)))',
(E(O(square)))', or (E(8(pentagon))'. (The prime (') represents barycentric
subdivision and the sigma (E) represents suspension.) Their proof utilizes a
special paving of the 3-manifold by cubes. Their constructing of the paving
is based upon the universality of the Borromean rings and a straight-forward
paving of S3 that respects the Borromean rings.

In further investigations of universality, H. M. Hilden, M. T. Lozano, and J.
M. Montesinos [HiLoMo852] deduced that any closed orientable 3-manifold
can by pentagulated, that is, obtained from a finite set of dodecahedra by
gluing along their pentagonal faces in pairs. In [Ba91], P. Bandieri proved
that every 3-manifold admits a decomposition into octahedra.

Patterns of Contact So any closed 3-manifold can be viewed as an assem-
blage of either tetrahedra, cubes, octahedra, or dodecahedra whose faces are
glued together in pairs. (The question of icosahedra appears to be open.)

A suitable partial gluing of the units in any such assemblage yields a single
more involved polyhedral 3-ball with triangular, square, or pentagonal faces
which, when identified in pairs, produces the 3-manifold. The partial gluing
involves the faces penetrated by a maximal tree in the dual complex for the
assemblage. So one can construct any closed 3-manifold M using a single
polyhedral 3-ball P whose finitely many boundary faces are glued together
in pairs. The interior of P becomes an open 3-ball whose boundary meets
itself in the manifold M along an embedded 2-complex K, which is a spine of
M in the sense of Chapter I. But here the focus is on viewing the spine as the
boundary points of contact that arise when a 3-ball is fully inflated, filling
all available space in the closed 3-manifold M. The manifold M is orientable
exactly when the paired faces of P are oppositely oriented in its boundary.

The face identification procedure is a very traditional method of constructing
3-manifolds. Poincare's original construction [Po04] of a homology 3-sphere
is that of a solid dodecahedron in which opposite faces are identified with a
7r/5 twist (see Figure la). The Weber-Seifert manifold [WeSe33] is obtained
from the dodecahedron by using a 37r/5 twist (Figure lb). The vertex la-
bels and edge labels in Figure 1 show the face identifications that give these
distinct dodecahedral spaces.
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(a) (b)

Figure VIII.1. Spherical and hyperbolic dodecahedral spaces

Of course, not every pairing of oppositely oriented boundary faces of a poly-
hedral 3-ball P yields an oriented 3-manifold. The only troublesome points
in the resulting quotient space M = P/- are the 0-cells of K = (OP)/- that
arise from the vertices of P. They have small neighborhoods that are cones
over surfaces Si constructed from hemispherical caps in P about its vertices.
The classical argument [SeTh45, 60, Satz 1] expresses the manifold property
in terms of Euler-characteristic:

(1) M is a closed orientable 3-manifold if each surface Si is a 2-sphere if
X(US;) is twice the number of 0-cells of M if X(K) = 1 if X(M) = 0.

Geometric Structures The description of a 3-manifold M as a geometric
polyhedron P with face identifications via geometric isometries can provide
the view that one has in M = Pl.- when one sights along geodesics.

The triple torus S1 x S' x S1 provides a simple Euclidean example, as it results
when opposite faces of a unit cube are identified under translation. Since
the cube serves as a fundamental region for the group Z3 generated by three
mutually orthogonal translations of Euclidean space El, this construction also
gives S1 x S1 x S' the Euclidean structure of the orbit space E3/Z3. Lines in
E3 descend to geodesics in the orbit space; so the view along geodesics from
any point in S1 x S' x S' is that of the Z3 lattice of unit cubes in the universal
covering E3. Spectators in S' x S1 x S' see Z3 copies of themselves.
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Poincare's spherical dodecahedral space is the orbit space of the 3-sphere un-
der action of the binary icosahedral group <5,3,2> as a group of 120 spher-
ical isometries. There is a dodecahedral fundamental region whose translates
under the group < 5, 3, 2 > tessellate S3 into two solid torii of 60 dodecahedra
each, with exactly 3 dodecahedra sharing each edge and 4 meeting at each
vertex. This tessellation by regular spherical dodecahedra with 120° dihedral
angles gives the view that one has in spherical dodecahedral space.

When a polyhedron P appears in hyperbolic 3-space H3 and its planar faces
are paired via isometries that satisfy certain cyclic conditions, Poincare's
polyhedron theorem (see [Ma71]) shows that the polyhedron is a fundamental
region for the discontinuous group of isometries G generated by the identifica-
tions of the sides. In this case, the manifold M = P/- acquires a hyperbolic
structure as the orbit manifold H3/G. The tessellation of hyperbolic 3-space
via translated copies of the polyhedron gives the hyperbolic world view that
one has in that orbit 3-manifold. For the Weber-Seifert hyperbolic dodeca-
hedral space, this view shows a tesselation of hyperbolic 3-space by regular
hyperbolic dodecahedra with 72° dihedral angles, with exactly 5 dodecahedra
sharing each edge and 20 meeting at each vertex. This is an infinitely richer
view than the one in spherical dodecahedral space.

Open manifolds can often be handled by considering polyhedra with deleted
vertices, such as, an ideal hyperbolic polyhedron with vertices at infinity.
In W. Thurston's notes, The Geometry and Topology of 3-Manifolds, the
complement of the figure-eight knot, Whitehead link, and Borromean rings
are given complete hyperbolic structure via expression as ideal hyperbolic
polyhedra with face identifications. In the same manner, A. Hatcher [Ha81]
established the hyperbolic structure of arithmetic type of certain other link
complements. W. W. Menasco [Me83] gives a constructive algorithm for
representing any link complement as an ideal polyhedron (not necessarily
hyperbolic) with face identifications and works out the structure for some that
are hyperbolic. The software Snappea distributed by J. Weeks implements this
algorithm and determines the hyperbolic status of the polyhedron.

1.2 Squashing maps for closed 3-manifolds

The method of representing a closed orientable 3-manifold as a single polyhe-
dron with face identifications is one whose tie to combinatorial group theory
is most immediate. So, in keeping with the theme of this volume, we devote
the rest of this section to this method. We show, for example, how to capture
the homotopy type of these manifolds and how to recognize 2-dimensional
spines of these manifolds from this viewpoint.
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Combinatorial and fibered 2-cells We first generalize the face identification
process by defining squashing maps as in [Si86]. As in Chapter II, any 2-
cell c2 in a combinatorial complex L has a combinatorial characteristic map
V) : (Pk, Pk) -+ (L2, L'), where (Pk, Pk) is the regular k-gon combinatorial
complex on (B2, S1) for some k > 1, by which c2 and each boundary 1-cell
cl receive a linear parametrization. Two such 2-cells are identifiable if they
are modeled on the same polygonal complex Pk. A product 2-cell (f 2, ¢) in L
has a combinatorial characteristic map 0 : B' x B' -a L; it may be viewed as
fibered by the projection B' x B' -+ B' onto the first factor, with fibered side
cells f 1d = 0({±1} x B') of dimension d = 0 or 1, and ordinary end 1-cells
et = O(B' x {±1}), and finally sections st = 4(B' x {t}) (-1 < t < +1).
In any combinatorial 2-complex L, a collection of product 2-cells may be
designated as fibered, provided that the fibered side cells bound only the
sides of other fibered 2-cells. Examples of fibered 2-cells appear in Figure 2,
with sections traced out; other examples have e+ = el and/or f+ = fa

e'

fl
St

e'

D' 9

11 A

e'

e'

fo
+

Figure VIII.2. Some fibered 2-cells

Squashing Maps A squashable complex C on the 2-sphere S2 is a combi-
natorial complex, together with a grouping of its non-fibered 2-cells in op-
positely oriented, identifiable pairs (c2t,'f). An identification of the paired
2-cells (c2f, -0 ) in C according to their combinatorial characteristic maps
V)± : Pk -4 S2, as well as the identification of all sections c/(B' x {t})
(-1 < t _< +1) of each fibered 2-cell (f 2, 0) in C, squashes the ball-sphere
pair (B3, S2) into a combinatorial complex pair (M, K) = (B 311C, S2//C).
The resulting combinatorial quotient map

q = q(C) : (B3, S2) -> (B3//C, S2//C) = (M, K)

is called the squashing map associated with C. The 2-skeleton K involves
2-cells (d2, 0) = q(c2t, V)±); and q : (B3, S2) _4 (M, K) is a combinatorial
characteristic map for the single 3-cell d3 = q(B3) of M. When M is a
3-manifold, K serves as a spine, as B3 - {0} , S2 implies M - {q(0)} K.
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An easy extension of the classical argument [SeTh45, 60, Satz 11 shows:

Lemma 1.1 A squashing map q : (B3, S2) -+ (M, K) yields a closed oriented
3-manifold M with spine K if X(K) = 1.

The technique, described above, of partially assembling a triangulation, cou-
pled with the technique of collapsing a maximal tree in a simplicial spine,
show:

Lemma 1.2 Every closed oriented 3-manifold M has a presentation via a
squashing map q : (B3, S2) -# (M, K). One can ensure that either there are
no fibered 2-cells in S2 or that the spine K has a single 0-cell, but it is not
always possible to have both of these features.

Vacuum sealing a known spine To illustrate Lemma 1.2 and the impossibil-
ity, in general, of achieving both features mentioned, we produce squashing
maps for two very simple closed oriented 3-manifolds, S3 and S' X S2. The
technique amounts to vacuum sealing a 2-sphere around a spine K, using
the cells of K to imprint a squashable complex C on S2. The details can
be best expressed using a handle decomposition of a thickening or regular
neighborhood of the spine.

Let K be a combinatorial 2-complex, with its k-cells denoted by dk (k =
0, 1, 2). Let M be a closed orientable 3-manifold that has K as a spine. A
regular neighborhood N(K) of K in M can be assembled from k-handles
H(dk) __ B3-k x Bk whose cores #cH(dk) {0} x Bk lie on the k-cells
dk E K (k = 0, 1, 2). The 1-handles H(d') B2 x B1 are solid cylinders
that attach by their end discs eH(dl) - B2 x 8B1 to disjoint discs in the
boundary of the 0-handles H(d°) = B3 at the ends of the 1-cells d'. The 2-
handles H(d2) - B' x B2 are solid cylinders that attach by their edge annuli
eH(d2) = B' x 0B2 to annuli in the boundary of the union of the 0-handles
and 1-handles. The handles have disjoint interiors.

Because K is a spine of M, the boundary 3N(K) is a topological 2-sphere
S2 bounding a complementary 3-ball B3 in M. The handles can be chosen so
that their attachments cover the boundaries of the 0-handles and 1-handles,
save for some product 2-cells that lie on the side cylinders aH(dl) - 19B2 x B1
of the 1-handles and that have cross-sections paralleling the 1-cells d' E K.
Then the spherical boundary ON(K) is completely tiled by those product
2-cells, together with the paired side discs aH(d2) = aB1 x B2 of the 2-
handles These cells define a squashable complex C on S2 = aN(K) as the
non-paired 2-cells of C are product cells that meet side-to-side. A suitable
regular neighborhood collapse ON(K) \ K produces the squashing map
q(C) : ON(K) = S2 -+ K. This is the vacuum sealing procedure.
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Three sphere The squashable complex C on S2 in Figure 3a consists of two
sliced hemispherical 2-cells that are displayed in clamshell fashion, hinged
open at 1 E S'. This complex C arises from vacuum sealing a 2-sphere
around the dunce hat K = d° U dy Uxx-'x d2 (modeled on the presentation
(x I xx-lx)) embedded as a spine in the 3-sphere S3 just as in Figure I.12. Try
it for yourself. So the squashing map q(C) : (B3, S2) _+ (S3, K) determined
by C yields the 3-sphere S3, with the contractible dunce hat K as spine.

(a) (b)

Figure VIII.3. S3 and S' X S2

The product S' X S2 The squashable complex C in Figure 3b arises from
vacuum sealing a 2-sphere around the pin-cushion K = d° U d, d2

(modeled on the presentation (x I xx-1)) embedded as a spine in S1 X S2. It
contains two fibered 2-cells, in addition to paired 2-cells that form d2. Figure
4 shows how this squashing arises from a handle decomposition of a regular
neighborhood N(K) in S1 X S2. The two fibered 2-cells meet side to side
at the (vertical) meridian of the 0-handle H(do) and end at the attachment
annulus cH(d2) for the 2-handle. An application of [Si86, Theorem 3] provides
a surgery description showing that the manifold M = B3//C really is S1 X S2.
The complex C is the unique one yielding K; so S' X S2 is the unique closed
orientable 3-manifold with this spine. Finally, any squashing q producing
M = S1 X S2 and a spine with a single 0-cell d° must contain fibered 2-cells.
For, in the universal covering complex M = R3 - {0}, the 3-cells above the
single 3-cell d3 = q(B3) are permuted by a radial expansion p : R3 -* R3 to
tile M = R3 - {0}. Their attaching maps must span consecutive 0-cells d°
and p(d°) and perform some collapsing at these bottlenecks.
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When the fibered 2-cells of a squashable complex C do not meet to contain
a circular fiber, they may be preliminarily squashed from C, stretching the
paired 2-cells accordingly. The equator of Figure 3b is just such a fibered
circle; it spans a disc in B3 that forms a 2-sphere which doesn't bound a 3-
ball in S1 X S2. So the phenomenon of essential fibered 2-cells in a squashable
complex relates to the irreducibility (see Subsection 1.5) of the 3-manifold.

Taut identities When a squashed 2-sphere K = S2//C has a single 0-cell,
it is the model Ky of a group presentation P = (x I r) for irl(K). Then the
squashing map q : S2 -* K can be interpreted as a realization of an identity
sequence w = ((wl,rl)E1, ... ,(w,,,,r,,,)Em) for P as in Chapter II, Section 2.
The identity sequence is revealed when one dissects the spherical complex C
into an array of polygonal balloons and strings as in Figure 11.6. The string
assignments into KP are words {w1 E F(x)} and the polygon assignments are
signed characteristic maps {0Ti. } of the 2-cells cT (r E r).

For example, the squashing map for Figure 3a represents the trivial iden-
tity (1,xx-1x)(1,xx-1x)-1 for the dunce hat presentation (x I xx-lx). The
squashing map for Figure 3b represents the identity (1,xx-1)(x-1,xx-1)-1

for the pin-cushion presentation (x I xx-1).

In [Si86], an identity for a presentation P is called taut if it can be realized
as above by a squashing map q : S2 -4 K that produces the model K =
KP of the presentation. So you may think of a taut identity as one that
determines its presentation. Because the model KK has X(K) = 1 if and only
if the presentation P is balanced (i.e., has an equal number of generators and
relators), the two preceding lemmas yield:

Theorem 1.3 ([Si86], (7)) A group 7r is the fundamental group of a closed
orientable 3-manifold if and only if there is a taut identity w for a balanced
presentation P for 7r. Also, any squashing map q., : S2 -* K representing a
taut identity w forms a 3-manifold M = K UqW B3 with spine K = Kp.
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Lens spaces For relatively prime integers 1 < q < p, the squashable complex
Cy,,, comprised of two regular p-gon complexes Pp , with boundaries identified
under a 27rq/p-twist, produces the pseudo-projective plane Kp = S2//Cp,q
modeled on the presentation (x I xP). The squashing map q(Cp,q) : S2 _4
Kp represents the taut identity wq = (1, xp)(xq, xp)-1. The associated 3-
manifold B3llCp,q is the lens space Lp,q. (When (p, q) # 1, the squashing
does not produce Kp and the identity wq = (1,xp)(xq,xp)-1 is not taut.)

Triple torus example The cube with opposite faces paired via translation is
a squashable complex C that yields the 2-complex K = S2//C modeled on
the presentation (x, y, z I [x, y], [y, z], [z, x]) of 7L3. The associated 3-manifold
M = B3//C is the triple torus S1 x S' x S1. The partial dissection in Figure
5 shows that the squashing map q(C) : S2 -+ K realizes the taut identity

(1, [x, y])(y, [z, x])-1(1, [y, z])(z, [x, y])-1 (1, [z, x])(x, [y, z])-1

Figure VIII.5. S1 x S1 X S1

Hyperbolic dodecahedral space The squashing of the dodecahedron via the
identification of opposite faces under 37r/5 twists produces hyperbolic dodec-
ahedral space and a spine modeled on a six-generator six-relator presentation.
The reader may derive the taut identity realized by this squashing map.

Spherical dodecahedral space The squashing of the dodecahedron via the
identification of opposite faces under 7r/5 twists produces spherical dodeca-
hedral space and a spine that has five 0-cells, and so it doesn't immediately
yield a presentation of the fundamental group. In [Si86, Section 5], it is shown
that the squashable complex Cr, on the suspension of the 6-gon, displayed in
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Figure VIII.6. Spherical dodecahedral space

open clamshell fashion in Figure 6a with paired 2-cells co-labeled, produces
spherical dodecahedral space and a spine modeled on the presentation

P6 = (xi(i E Z6) ( xi'x=-ixi+1(i E Z6))

To verify this, one first checks that the identification of the paired 2-cells,
matching up their starred reference points and their orientations, causes the
0-cells to coalesce into a single 0-cell and the 1-cells to coalesce into six 1-cells
as labeled in Figure 6b. So the boundaries of the six 2-cells read the six re-
lators ri = xi 1xi_1xi+1(i E Z) of the presentation P6. Second, one identifies
the resulting manifold as spherical dodecahedral space by means of a surgery
description derived using [Si86, Theorem 3]. A dissection of C6, placing the six
lower 2-cells in a pin-wheel arrangement around the six upper 2-cells, shows
that the squashing map realizes the taut identity njE4 (1, ri)(xt 11, ri+4)-1.

The squashing construction implies that a taut identity w for a balanced
presentation P = (x I r) is a paired identity: every relator r E r appears in
exactly two entries of w and they have opposite exponents, say (w,.,+, r)+1 and
(w,.,_, r)-1. The following observation is used below to establish a homotopy
classification (Theorem 1.8) for closed oriented 3-manifolds.

Theorem 1.4 The quotients w,.,+wr, i E F(x) associated with the paired en-
tries in a taut identity w = ((wl, r1)E' , , (wm, rnl)fm) for a balanced pre-
sentation P = (x I r) represent a set of generators for the group presented.
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Proof: Let q(C) : S2 -+ K be a squashing map realizing the taut identity
w. For all paired 2-cells (c*,±, V),,±) of C, we attach to B3 a polygonal post
Pk x B', gluing its ends Pk(,) x {±1} to crt via z/i,,± (here, k(r) = length(r)
for r E r). By [Si86, (15)], this forms a handlebody H(C) that is one half of a
Heegaard splitting of the manifold M = B3//C. (The other half of the handle
body is constructed from a collection of plugs B' x B2, one for each generator
x E x glued by its tread B' x S' along the annulus of fibered boundary
2-cells of H(C) that project to the 1-cell cc.) Since the quotients w,,+wr i
are represented by closed curves in the handlebody H(C) that generate its
free fundamental group 7rl(H(C)), the theorem follows from the Heegaard
splitting of M. 0

1.3 Detecting 3-manifold spines

Reinterpreting Neuwirth's Algorithm in the light of §1.2 As indicated in
Chapter I, §3.1, L. Neuwirth's algorithm [Ne68] can decide whether a standard
complex K is the spine of a closed orientable 3-manifold. When the algorithm
detects K as such a spine, the proof, in effect, yields a squashable complex
on the 2-sphere boundary of the thickening of K (see the vacuum sealing
technique following Lemma 1.2). So applying the algorithm is equivalent to
assembling a squashing map q : S2 -+ K from pairs of oppositely oriented
copies of the combinatorial characteristic maps TP, : Pk(,) -1 K for the 2-cells
c* of K, which are indexed by the relators r E r of an associated balanced
group presentation' P = (x I r). (Pk(,) denotes the regular k(r)-gon, where
k(r) is the length of the relator r E r.) It is insufficient to just build a
combinatorial map q into K from these pairs; one must check that squashing
the paired and fibered 2-cells creates K, i.e., identifies all the 0-cells as well
as the 1-cells according to their labels x E x. Then M = K Uy B3 is a closed
oriented 3-manifold by Lemma 1.1.

As a more visual alternative to Neuwirth's algorithm, one can construct all
such spherical diagrams for the presentation P and apply the check for squash-
ing maps to determine all appearances of the model Kp for the presentation
as a spine of a closed oriented 3-manifold. Neuwirth's algorithm works well
for short lengths of the relators. But, when the 2-complex really is a 3-
manifold spine, it is usually quicker to construct a squashing map directly
than to apply Neuwirth's algorithm.

'Throughout this section, a presentation is an alphabet x together with a collection of
not necessarily distinct elements from the free semigroup of x and its formal inverse x''.
Two presentations are considered the same if the 2-complexes determined by them are
isomorphic.
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For example, Neuwirth's presentation [Ne68]

P xi (i E Z) I xl ... xi-lxi 1xi-F1 ... x,, (i E 7Lin))

presents the spine of a closed oriented 3-manifold because there is the squash-
able complex depicted in Figure 7.

4

34 1 4 3

ft 2 4 4

4 2

2

1

(n = 4)

Figure VIII.7. Neuwirth's example

We will turn back to squashings in §1.4 but for the moment carry the discus-
sion of embeddability of 2-complexes into 3-manifolds into a new direction.

Railroad-systems R.P. Osborne and R.S. Stevens (see [OsSt74], [OsSt77])
have their own approach for detecting spines of (closed) 3-manifolds, based
upon an observation which was stated in Chapter I, (51). They derive relator
conditions by considering the neighborhoods of the edges, the handles of
the thickening. The advantage of Osborne and Stevens' approach is that
necessary algebraic conditions on the shape of the relators are derived which
do not result from Neuwirth's algorithm (see Theorems 1.7 and 1.8 below).

Below, we give a different development of Osborne-Stevens' railroad-systems.

First, rather than considering the original problem (whether a given group
presentation fits on a handlebody as in Chapter I, (51)), we consider a struc-
turally enriched problem: whether a group presentation with given syllable
decomposition of the relators fits on a handlebody (see Lemma 1.5 and Propo-
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sition 1.6). Second, we shall discuss how an answer of the enriched problem
(can) lead to an answer of the original problem (see Theorem 1.7).

For motivation, consider the boundary curve k of a handlebody V in Figure 8.
Corresponding to the arcs Al, A2, A3 of intersection of k with the handles Hx,
Hy, and Hz we read xxy° and it is not possible to isotope k so that its
intersection with the Hi has fewer components.

z

Figure VIII.8. Handlebody figure

If a presentation P = (x1, ... , x 1 , . .. , x9z I r1, ..., rj,... , fits on a handle-
body V with handles Hi, the arcs2 A. of intersection of the disjoint relator
curves kj with Hi can be assumed to be proper, simple and nontrivial on Hi.
(A proper arc A in a surface F is trivial if it can be homotoped relative as
into OF.) Each arc Aq C Hi corresponds to a syllable x;° in some relator,
possibly eq = 0 despite Aq being nontrivial, as the syllable only reads the
longitudes of Hi (e. g. A3 in Figure 8). Note that two choices are involved in
the definition of the handles Hi of V: First, a system of meridian discs for
V, second a system of connecting arcs (longitudes) on the sphere obtained by
cutting aV along the chosen meridians.

Thus, when P fits on V, each relator rj acquires from V a syllable-decomposition
rj = IIxjkk, with ejk E Z. Of course, every rj has a unique natural syllable-
decomposition for which ejk # 0 and jk = jk+l implies that ejk and ejk+, have
different signs, but we the one we read off V need not be natural. As a further
example, there is the trivial syllable-decomposition where ejk E {f1}.

'If some kj runs entirely on an Hi, isotope a little arc onto V - UH;
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Lemma 1.5 If P with given syllable-decomposition fits on a handlebody, then
the absolute values I e3, I of the xi-exponents of the syllable-decomposition of
the relators take on at most 3 distinct values mi, pi, and mi + pi, where
(mi, pi) = 1.

Proof: Two disjoint proper simple nontrivial arcs A,, .12 on a handle Hi
are isotopic iff OA doesn't separate 0A2 on the boundary circle of Hi. To
see this, close non-separating Al and A2 into disjoint simple curves hl, h2
using a disc filling the puncture of Hi. Removing a regular neighborhood of
h1 from the resulting torus T leaves an annulus in which the only nontrivial
simple closed curve is parallel to the boundary. Hence, h1 and h2 are isotopic,
whence also Al and A2. Conversely, if OA and 0A2 do separate, the analogous
construction yields generators h1 and h2 for irl (T) which implies that Al and
)2 aren't isotopic.

For each isotopy class of arcs Aq on Hi, choose a representative A. By the
above reasoning, their boundaries aaq separate each other in pairs so that
we can assume that each aaq is a pair of antipodal points on aHi. Passing
again to T, we can close the A. to nontrivial simple closed curves hq, where
flhq is a singleton. Assume that there are at least two of them, h1 and h2. In
terms of canonical generators a and b of 7rl (T), represented by the inclusions
a:Slx{1}-4 S1xS1=Tand0:{1}xS1-+S1xS1=T,let[hi]=apbq
and [h2] = amb8 wrt some orientation of the involved curves3. A pair apbq,
ambs of nontrivial elements of 7r1(S1 x S1) is represented by a pair hl, h2 of
simple closed curves that meet transversally in a single point if ps - mq = f1.
(The point is that the two curves hl, h2 cut T into a square, making it possible
to define a homeomorphism H : T -* T such that H o a = h1 and H o / = h2.
The induced automorphism H# = (m

s

) of the free abelian group 7r1(T)
necessarily has determinant ± 1. See [He76, Lemma 2.9]).

Consequently: If the presentation P, with its given syllable-decomposition,
fits on a handlebody, then the absolute values of the exponents of syllables
xP and x;" associated with the arcs Al and A2 are relatively prime. If m = 0
(resp. p = 0), then I p 1, (resp. I m = 1).

If there is a third isotopy class h3, it must cut diagonally across the square
cut out of T by h1 and h2 and so leaves no further room for a fourth isotopy
class h4 to exist. So [H o 6] = [h3] where 6 is one of the four directed
diagonals of S1 x S1. Because [6] = [a]}1[,3]f1, then [h3] = [hl]±1[h2]t1
Thus the absolute value of the exponent of the syllable associated with A3
equals the absolute value of the sum or the difference of m and p. In the

3Up to this point, only loops have been considered; and, strictly speaking, they become
elements of 7r1 only after equipped with an orientation.
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latter case, exchanging the roles of A2 and a3 gives rise to the transition
{m,p,m-p=:m'} -* {p+m',p,m'}
Osborne and Stevens [OsSt77] use this observation to devise a new picture of
M, called railroad-system (abbrev., RR-system) as follows. In the plane E2,
draw disjoint regular hexagons labelled by the generators xi. The plane stands
for the handlebody surface 8V - UHi, the handles Hi have to be imagined
as sitting on the hexagons. The edges of each hexagon are labelled clockwise
(according to an orientation of E2) by mi, mi +pi, pi, -mi, -(mi + pi), -pi.
The (pairwise disjoint simple sub-)arcs A of the relation curves k3 running
on 8V - UHi connect the hexagons. Their endpoints avoid the corners of the
hexagons and we get from A to the next arc A9+1 of kj by proceeding along
a line segment in the hexagon orthogonal to two of its edges. (See Figure 9.)

Figure VIII.9. Relators read x3yxy and x2y3

Adding to the hexagons handles Hi inscribed with the arcs A. achieving the
values mi, mi + pi, or pi returns us to a thickening of K1. Because [He76,
Lemma 2.9] has a valid converse, we have:

Proposition 1.6 P with its given syllable-decomposition fits on a handlebody
if and only if there is an RR-system for P.

While an RR-system gives a good view of the manifold, the ambiguity of syl-
lable decompositions still prevents derivation of relator restrictions. The con-
clusion of Lemma 1.5 is always fulfilled for the monosyllables and the values
in, = 1, pi = 0 Vi. But it needn't hold for the natural syllable decomposition,
as in the following example, due to Osborne-Stevens: For (x, y I x4y, x2y),
the set 2, 4 doesn't equal m, m + p, p as required for Lemma 1.5; whereas the
syllable decomposition x2y°x2y of the first relator gives rise to the RR-system
of Figure 10.
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Figure VIII.10. RR-system for (x, y I x2y°x2y, x2y)

On the other hand, for a restricted class of presentations (see Theorem 1.7
below), 0-labels as well as recurrent arcs having both endpoints on the same
hexagon without constituting an entire relator can be eliminated from the RR-
system, changing only the syllable decomposition of the relators. In order to
switch back to the non-enriched problem (see the discussion ahead of Figure
8), we assume the presentation P to be syllable-reduced, i.e., the relators are
reduced and it is impossible to decrease the total number of syllables of (the
natural syllable decomposition of) P by conjugating some of the xi, i 0 io,
with a fixed xi0-power and then reducing. Note that any presentation can be
transformed to a syllable-reduced one by a finite number of elementary steps.
Note further that reduced two-generator presentations are always syllable-
reduced.

The case n = 2 of the next theorem was given in [OsSt74, Theorem 1], for
arbitrary n, see [Ho-An92].

Theorem 1.7 Let P = (x1,... , x,
I

r1,... , r,,,,) be syllable-reduced and as-
sume that for each i there is an xi-syllable in some rj with exponent ej,k # ±1.
If P is a presentation for an orientable 3-manifold, there is an RR-system for
the natural syllable-decomposition of the rj. In particular, the absolute values
of the xi-exponents in the rj take on at most three distinct values mi, pi, and
mi + pi, where (mi, pi) = 1.

For presentations satisfying the assumptions of this theorem, one can amal-
gamate Neuwirth's and Osborne-Stevens' ideas by rendering Neuwirth's def-
initions into permutations of a set of certain points on the edges of the
hexagons, thus constructing an algorithm which in many cases is shorter
than Neuwirth's.

Osborne offers in [Os78] the simplest closed 3-manifolds, catalogued accord-
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ing to group presentations for their spines. Of course, a spine may not
uniquely determine a 3-manifold, a fact illustrated by the pseudo-projective
spine K(x,x5) shared by the non-homeomorphic lens spaces L5,1 and L5,2. The
problem of classifying 3-manifolds with a specific spine has been considered
by R. S. Stevens [St75] and A. Cavicchioli and F. Spaggiari [CaSp92].

1.4 Homotopy classification

As indicated in Chapter I, prior to Theorem 3.1, a closed oriented 3-manifold
M is not, in general, determined by a spine K. However, we show in Theorem
1.9 below that M is determined up to oriented homotopy type by the homo-
topy class [q] E 7r2(K) of a squashing map q : (B3, S2) -* (M, K), in fact, by
a related element CM E H3(7rl(M)) that is independent of the spine K. More
precisely, we use squashing maps to prove G.A. Swarup's homotopy classifi-
cation [Sw74] of closed, oriented, 3-manifolds M by their fundamental class
CM E H3(irl(M)). Swarup's work refines an earlier homotopy classification
result by C.B. Thomas [Th67].

Fundamental class Associated with each closed oriented 3-manifold M is
an element CM E H3(7r1(M)), called the fundamental class of M; namely, CM is
the image CM = i*(zM) E H3(J) - H3(7r1(M)) of the traditional fundamental
class zM E H3(M) = Z under the homomorphism induced by the inclusion
i : M C J, where J is an aspherical CW complex with the same 2-skeleton
j2 = K as M. There is a way to express the fundamental class CM using any
combinatorial presentation of M by a squashing map q : (B3, S2) -* (M, K).
The spherical attaching map q : S2 -4 K is homologically trivial because it
identifies the non-fibered 2-cells of S2 in oppositely oriented pairs. So its
homotopy class [q] E 7r2(K) determines a coset

Cq E r(K) = Ker(h : ir2(K) -4 H2(K))/(I (in1(K)) '72(K)),

where h is the Hurewicz homomorphism and I(irl (K)) is the augmentation
ideal of the integral group ring Z7r1(K).

The following summarizes Propositions 1 and 2 in [Si86].

Lemma 1.8 For a closed oriented 3-manifold M and spine K, there is a
natural isomorphism H3(7rl(M)) : r(K), under which CM E H3(7rl(M))
corresponds to C. E r(K) for any squashing map q : (B3, S2) -* (M, K).

Proof: For any group G and free resolution (C.,,9.) of the trivial module Z
over the integral group ring ZG, the derived groups H. (Z ow C*) are taken
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as the integral homology groups H. (G) of G. The connecting homomorphism
associated with the short exact sequence 0 -> I (G) C -4 C. -* Z ®ZG C* -4 0
of chain complexes over ZG, where I(G) is the augmentation ideal of G, are
isomorphisms (C* being free)

(G) = Hn+, (Z ®zG C*) H.(I(G) C*) (n > 1).

In particular, H3 (G) can be calculated entirely in terms of the second bound-
ary operator a2 : C2 -> Cl as the quotient

H2(I(G) C*) = (Ker a2 fl I(G))/I(G) Ker a2.

When J D M is an aspherical complex with J2 = K, the cellular chain
complex C*(J) of the universal covering J D M, with the Z7r1(M)-module
structure given by the action of irl (M) as covering transformations, is a free
resolution of Z over Zir1(M). Using this resolution and the identification
C. (J) = Z %G C. (j), the connecting isomorphism yields

H3(J) = H3(iri(M)) Ker(h : ir2(K) -4 H2(K))/(I(irj(K)) 7r2(K)).

In the previous display, we have used the identification

ir2(K) __ H2(K) - Ker a2(J) < C2(J)

of Lemma 3.3, Chapter II. This isomorphism H3(J) F(K) calculates the
homotopy boundary in K of the cellular homology 3-cycles in J, which yields
the claim of the lemma.

Here is Swarup's classification theorem:

Theorem 1.9 ([Sw74, Theorem B]) Let a : 7r1(M) -4 7r1 (N) be an isomor-
phism for closed oriented 3-manifolds M and N. There is an oriented (i.e.,
degree one) homotopy equivalence F : M -* N with F# = a if and only if
a* : H3(irl(M)) -4 H3(irl(N)) preserves the fundamental class: a*((M) = SN.

Proof: A degree one map F : M - N induces F. : H3(M) --+ H3(N)
satisfying F. (zM) = zN. Under the correspondence of Lemma 1.8, this implies
that a. (CM) _ (N.

For the converse, consider squashing maps

qM : (B3, S2) -> (M, K) and qN : (B3, S2) - (N, L)

realizing taut identities w = ff i(wi, ri)fi and v = fh(zj, sj)ai for presentations
P = (x I r) and Q = (y I s) on which the spines K and L are modeled.
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Let (w,,±, r):11, r E r, and (z3,±, s)±l, s E s, denote the paired entries of
these taut identities. Using the correspondence in Lemma 1.8, the condition
a. ((M) = (N translates to say that any map F : K -+ L inducing a on 1r1
carries [qM] E irz(K) to [qN] E 7r2 (L), up to an element of I(7rl(L)) 7r2 (L).

Equivalently, the lifting .P : K -i L induces a chain homomorphism C2(F):

irz(K) "1'- 7r2(K) H2(K) = Ker az(K) < C2(k)

1F# 1F# P. 1C2(F)

irz(L) ' irz(L) 4 H2(L) = Ker az(L) < C2(L)

that carries

[q M] cr E C2(k) to [gN] cs E C2(L),
r E r s E s

up to an element of 8 E I(irl(L)) 7rz(L), i.e., C2(K)([gM]) = [qN] - 8.

As in Chapter II, Lemma 3.5, the modification F1 : K -3 L of F by any
chosen 7G7r1(K)-cochain y : C2(K) -+ ,r2(L) induces

C2 (F7) = C2 (-P) + y : C2(K) -> aC2(L).

Now (1) a is an isomorphism, (2) the quotients wr,+w, (r E r) associated
with the paired entries in the taut identity w = rj;(wi,r;)E' generate the
fundamental group 7r1(K) (Theorem 1.4), and (3) the augmentation ideal
I(irl(L)) of Z7r1(L) is generated by elements of the form (y - 1). It follows
that, by suitable choices of the spherical elements -y(Or) E 7r2(L), the image

'Y([qM]) = E (a(wr,+) - a(wr,-)) 'Y(cr)
r E r

in 7r2(L) < C2(L) can be made any prescribed element 8 E I(ir1(L)) irz(L). So
some modification F11 : K -* L carries [qm] E 7r2(K) exactly to [qN] E ir2(L).
This F7 extends to a degree one map G : M = K UqM B3 -+ L UqN B3 = N of
these 3-manifolds, mapping the 3-cell in M along a homotopy F7 o qM qN

in L and over the 3-cell in N. Such a map G is necessarily a homotopy
equivalence by [Sw74, Lemma 1.1].

Homotopy Type Invariant So the pair (7rl(M), (M E H3(7rl(M))) is a
complete invariant of homotopy type for closed oriented 3-manifolds M. The
preceding proof avoids Swarup's invocation (see, e.g., [Sw73, Theorem 1.0]) of
Stallings' Splitting Theorem [St651, St59], which establishes Kneser's conjec-
ture that a free product factorization of the fundamental group is realizable
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by a connected sum factorization of a closed 3-manifold. But a fair amount
of 3-manifold topology is lurking in Swarup's proof of the cited lemma.

Restrictions on the invariant SM and the classifying group H3(7rl (M)) are eas-
ily derived. The 3-manifold group 7r1(M) has some free product factorization

into l > 0 infinite non-cyclic indecomposable factors Gi (1 < i < 1), m > 0
finite factors Fj with orders d3 (1 < j < m), and n > 0 infinite cyclic factors
Tk with generators tk(1 < k < n). Stallings' Splitting Theorem implies:

Theorem 1.10 ([Si86, Theorem 2]) Associated with the free product factor-
ization into indecomposables

7r1(M)=(Gl*...*GI)*(Fl*...*Fm)*(Tl*...*Tn)
is a direct sum decomposition

H3(ir1(M)) = (Z ®... ED Z) ®(Zd, (D ... ® 7d-)

of l infinite cyclic and m finite cyclic factors, under which SM E H3(irl(M))
corresponds to an (l + m) -tuple of generators of the summands. 0

So there are these obvious questions:

(1) For the fundamental group G of a closed orientable 3-manifold, which
tuples of generators of the summands of H3(G) correspond to funda-
mental classes of closed orientable 3-manifolds M with irl (M) = G?

(2) What spines are required to represent all such classes?

(3) What are the orbits of the 3-manifold fundamental classes (M E H3 (G)
under the action of a E Aut G?

Answers to these questions would constitute a homotopy classification of the
closed oriented 3-manifolds with fundamental group 7r1(M) = G. For ex-
ample, Whitehead's homotopy classification [Wh412, Theorem 10] of the 3-
dimensional lens spaces (Lp,q Lp,3 if and only if qs = ±m2 (mod p) for some
m) can be derived in this way.

Implications for Spines There are homotopy features of the 2-dimensional
spines that follow from the 3-manifold topology. The proof of Theorem 1.10
is modeled on Swarup's derivation [Sw73, Theorem 3.2] of a presentation of
the 7r2(M) for a closed orientable 3-manifold M. An intermediate stage in
the proof of Theorem 1.10 involves the following description of 7r2(K) for the
spine K of a closed oriented 3-manifold.
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Theorem 1.11 ([Si86, Proposition 3]) Let q : S2 -* K be a squashing map,
where X(K) = 1, and let iri (K) have a free product factorization into inde-
composables as in Theorem 1.10. Then there is a Ziri(K)-module presentation
(xi, Yj, vk ] N(Fj) yj = 0) for ir2(K), where N(Fj) is the norm element in
Ziri(K) for the finite factor Fj of iri(K). Further, [q] represents the sum
Ei xi + Ei yj + Ek (1 - tk)Vk.

As observed in [Si86], it follows that a squashing map q : S2 -# K with
X(K) = 1 represents a Ziri(K)-module generator for 7r2(K) if and only if
iri (K) is indecomposable under free products and is not infinite cyclic. Fur-
thermore, ir2(K) equals Ziri(K) or Ziri(K)/N(iri(K)) as iri(K) is infinite
or finite. These are the cases of spines of closed aspherical 3-manifolds and
(homotopy) spherical space forms, respectively.

In these cases, do copies of the squashing map q : S2 -4 K always tile the
universal covering p : K -* K, as for the squashings of the triple torus and
the lens spaces? In the first case, where 7r2(K) = Ziri(K) and is generated
by [q], the spine K curiously determines the squashing map q : S2 -> K up
to homotopy and a unit of Ziri(K).

1.5 Topological Classification

Topological and geometrical classifications of closed oriented 3-manifolds be-
gin with connected sum decompositions via embedded separating 2-spheres.
A 3-manifold is prime if every embedded separating 2-sphere bounds a ball,
equivalently, in each connected sum decomposition one of the factors is the
3-sphere. A 3-manifold is irreducible if every embedded 2-sphere bounds a
ball. The only orientable prime 3-manifold that is not irreducible is S2 x Si.

Prime Factorizations In [Kn29], H. Kneser proved that any compact 3-
manifold can be expressed as a finite connected sum of primes, and J. Milnor
has shown [Mi62] that the prime factors are unique when M is orientable.
The prime factorization of a closed oriented 3-manifold M gives rise to a free
product factorization of iri(M) whose entries are the fundamental groups of
the prime factors. These free product factors are indecomposable, as in The-
orem 1.10, by Stallings' Splitting Theorem [St651, St59]. Below we describe
some of what is known about the topological classification of these three types
of closed, orientable, prime factors.

Space Form Factors A closed, orientable, prime 3-manifold with finite
fundamental group is the orbit space of a finite group action on a homo-
topy 3-sphere. So the classification of prime factors with finite fundamental
group requires resolution of the Poincare Conjecture and an analysis of all free
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actions of finite groups on S3. C. B. Thomas [Th79] has completed the clas-
sification begun by J. W. Milnor [Mi57] of groups that can act freely on S3;
any such group must be isomorphic with a standard orthogonal group (i.e.,
a subgroup of SO(4)). It follows that the only possible exotic 3-manifolds
with universal cover S3 must arise from nonstandard actions of standard
orthogonal groups on S3 and that if any closed 3-manifold with finite non-
orthogonal fundamental group exists, its universal cover is a counterexample
to the 3-dimensional Poincare Conjecture. (It is known [Th78] that all free
actions on S3 of certain orthogonal groups are conjugate to orthogonal ac-
tions.) The topological classification of lens spaces (Lp,9 = Lp,3 if and only
if s - ±gt1(mod p)) shows that the homotopy and topological classification
differ for closed, orientable, prime 3-manifolds with finite fundamental group.
For other evidence of this difference, see, for example, the work of Evans and
Maxwell [EvMa77].

Aspherical Factors By the Sphere Theorem ([He76, Theorem 4.3]), a
closed, orientable, prime 3-manifold with infinite non-cyclic fundamental
group (equivalently, closed, orientable, irreducible 3-manifold with infinite
fundamental group) is aspherical, a K(ir,1) manifold. If, in addition, it is suf-
ficiently large in the sense of containing a 2-sided incompressible surface, it is
called a Haken manifold. By the closed case of the work of Haken and Wald-
hausen (see, [Wa68]), a homotopy equivalence between two such closed Haken
3-manifolds is homotopic to a homeomorphism. Since homotopy equivalences
of aspherical spaces correspond to isomorphisms of their fundamental groups,
the closed Haken 3-manifolds are topologically classified by their fundamen-
tal group. All non-Haken closed, orientable, irreducible 3-manifolds with
infinite fundamental group appear to be Seifert fiber spaces or admit a hy-
perbolic structure, but their analysis is far from complete. For an algorithm
to decide whether a 3-manifold is a Haken manifold, see [JaOr84]. For closed
3-manifolds that do admit a complete hyperbolic structure, any homotopic
equivalence is homotopic to an isometry by Mostow's Rigidity Theorem. So
in fact the geometric structure of these manifolds is even determined by their
fundamental group.

Remaining Factor Finally, the only closed, orientable, prime 3-manifold
with infinite cyclic fundamental group is the non-irreducible S2 X S1.

Topological Invariant V. G. Turaev [Tu88] has paired Swarup's homo-
topy type invariant (ir1(M),(;M E H3(7r1(M))) with a torsion element 8(M)
in the ring of fractions of the rational group ring Q(H1M) to form a com-
plete topological invariant for geometric 3-manifolds, by which he means the
closed, oriented 3-manifolds each of whose prime factors is a hyperbolic,
Seifert fibered, or Haken 3-manifold.
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2 Singular 3-Manifolds

2.1 Presentation classes of singular 3-manifolds

In this section, we discuss (singular) 3-manifold thickenings of special poly-
hedra. For the terminology, see Chapter I, §3.1. While not every special
polyhedron embeds into some 3-manifold, it has been shown in Chapter I,
Theorem 3.2, that any one K2 of them admits a canonical (up to homeomor-
phism) singular3-manifold M3(K2) D K2 such that M3 \, K2. This singular
3-manifold-thickening procedure induces a bijection between 3-deformation
types of special polyhedra and equivalence classes of singular 3-manifolds un-
der certain elementary surgery operations defined below, see Theorem 2.2.

Definition (see Chapter I, §3.1): A singular 3-manifold M3 is a compact
connected polyhedron in which the link of each point is either D2 (boundary
point), S2 (inner point) or the projective plane p2 (singular point). The set
of boundary points is assumed to be nonempty.

Every singular 3-manifold M3 has a special spine K2(M3), i. e. a spine that
is a special polyhedron: In the absence of singular points, this is Theorem
3.1a of Chapter I; in the general case, one mimics the proof of Theorem 3.1a
considering additionally "pineapples" that are cones cP2 on the projective
plane (Exercise). This special spine is not unique but any two choices K2
and L2 3-deform into each other via M3 : K2 / M3 \ L2.

It is clear that if M3 arises as the thickening M3(K2) of a special polyhedron
K2, one choice of special spine is K2 itself. Conversely, starting with a given
singular 3-manifold M3, choose a spine K2(M3) that contains all singular
points of M3 in its intrinsic 2-skeleton and essentially4 (Existence is left as
an exercise. Hint: find a collapse of cP2 to a special polyhedron analogously
to Bing's house.) Then the thickening construction returns M3.

Thus, thickening and collapsing as above are inverse operations for appropri-
ate choices of K2(M3).

We are now going to analyze how the thickening changes when applying 3-
deformations to a special polyhedron. These changes will define the desired
equivalence relation - on singular 3-manifolds used in Theorem 2.2.

First, we introduce the elementary surgery operations T; ' (i E 11, 2,3, 5})
on special polyhedra (compare Chapter XI, §5.1). Each consists of a removal
of a certain local model from the special polyhedron K2 (if possible) and

4Essential means that the link of the singular point with respect to the disc is a generator
of rl of the projective plane, which is the link with respect to M3. We shall tacitly assume
the analogous situation henceforth.
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replacement of it by another one that is glued in along the same graph,
as indicated in Figure 11. Each substitution Tt I can be achieved by a 3-
deformation of K2 (Exercise, use Lemma 2.1 of Chapter I).

T1

10

E
T1-1

T2

E6

E
T2 1

T3

T3 1

T5

T5-1

Figure VIII.11.

By [Ma871, Ma872, Pi88] (see Chapter XI, Theorem 9), we have

A special polyhedron K2 3-deforms to L2 if and only if some sequence
of operations T1, T2, T3 and their inverses transforms K2 to L2.

Furthermore, by [Ma872] (see Chapter XI, Theorem 13),
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T3-1 is dispensable provided L2 cannot be embedded into a 3-manifold.

Or, T3-1 is always dispensable if T5 1 is added instead: If L'2 is obtained
from L2 by an operation T5, it cannot be embedded into a 3-manifold
(see Chapter I, Remark 2 to Theorem 3.1). Then, by the above remarks,f f,
there is a sequence K2

T1 ,T3 L". Combining with L'2
T*

L2 we see that

A special polyhedron K2 3-deforms to L2 if and only if some sequence
of operations5 Ti 1, T2 1, T5 1 and T3 transforms K2 to L2.

Compare thickenings M3(K2) and 11%I3(L2) before and after a Ti 1 operation.
Note that both local models E1 and E2 are embeddable into 1R3. Choos-
ing them small enough not to contain any singular point of the thickening
shows that M3(K2) and M3(L2) are homeomorphic: The homeomorphism is
a modification of the identity given by isotopically straightening the gluing
band of the upper thickened disc. Similarly, the moves T1, T2, and T2 1 don't
change the (homeomorphism type of the) resulting singular 3-manifold. The
situation is rather different for the remaining moves T,}1 (i = 3,5): Consider
for example the discs D1 and D'1 in Figure 11 before and after the move T3.
The thickening of the boundary curve 8D1 changes orientation (solid torus
resp. Klein bottle) because the local model at p forces D2 to run "downwards"
before the move and "upwards" after the move. Hence, either D1 or Di will
contain a singular point of the thickening. In general, the distribution of
singular points on K2 C M3(K2) determines the one on L2 C M3(L2). If we
know which of the (six) discs of K2 involved in T3 carry singular points we
can decide the locus of singular points after the move, but this would require
considering 26 cases.

To bypass this multiplicity, we introduce an elementary surgery operation
on singular 3-manifolds that allows the addition or deletion of two singular
points on discs of K2 minus a regular neighbourhood of its intrinsic 1- and
0-skeleton (see Quinn [Qu81], Metzler [Me85]):

Definition((0,2)-move)6: If M3 is locally a thickening of a 2-disc D2 without
singular points, then replace this piece by a thickening of a 2-disc with two
singular points in its interior.

'In fact, Ts could be avoided but we will see below that doing so (other than T;-'!)
doesn't give any advantage.

'Following Quinn, we denote the moves on singular 3-manifolds by the number of
singular points which are involved in the local situation before and after. For example, the
inverse (0, 2) -' of a (0, 2)-move is also written (2, 0).
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In other words, take out a piece of the form D2 x I that is glued into M3 along
iD2 x I and substitute it by a piece (cP2#0 cP2) (The symbol #a denotes the
boundary connected sum of singular 3-manifolds, i. e. R13 #aM2 = Mi UDZ
M2 where OM; D D2 C 0M2). The latter is glued into M3 along S1 x I,
where S1 is an orienting curve cutting both crosscaps of a(cP2#8 cP2) exactly
once. This process is described by the formula (N Us, xi D2 X I) - (N Us, xi
(cP2#a cP2)). Note the analogy to the definition of the operations y 1 on
special polyhedra given before Fig. 11: Here, a certain local model is removed
from the singular 3-manifold and replaced by another one that is glued in
along the same 2-manifold.

Lemma 2.1 The (0,2)-move (and its inverse) can be realized by a 3-defor-
mation of singular 3-manifolds.

Proof: The collapse

(cP2, Moebius strip) \, Moebius strip union a disc glued on its waist

(described in the proof of Theorem 3.2 of Chapter I) applied twice yields

(cP2#a cP2, S1 X I) \ Two Moebius strips union discs on their waists,
glued together along a band \, (Twisted) annulus with a disc on its
middle line,

which in turn expands to (D2 X I, S1 X I). 0

Definition ((4,3)-move): If M3 is locally a thickening of El with singular
points? as in Figure 12a, then replace it by a thickening of E5 with singular
points as in Figure 12b.

(a)

Figure VIII.12.

(b)

7The intersection of the "sheet" S with the T x I-part is contained in the boundary of
S. In Figure 12a, all singular points are in the horizontal part of T x I, in Figure 12b none.
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In other words, take a piece of the form (cP2#a cP2#a cP2#a cP2) out of
M3 leaving some, say N3, and substitute it by a piece (cP2#acP2#9 cp2).
These pieces are glued to 93 along a regular neighbourhood on ON3 of the
boundary graph of El resp. E5 (the complete graph on 4 points) which is an
annulus with two bands attached to it (see again Fig. 12) resulting in a torus
with two holes.

Let Ml result from k' by an application of the (4,3)-move. Then

(Exercise) M3 \, g3 U El /\,3R3 U E5 / Mi rel g3

where El fl N3 = {free faces of Ell C OR' has a torus with two holes as a
regular neighbourhood on aN3 and the same property holds for E5 instead
of El.

Investigating the definitions of the elementary surgery moves on singular 3-
manifolds, we can state

Theorem 2.2 There is a bijection between 3-deformation types of special
polyhedra and equivalence classes of singular 3-manifolds under the elemen-
tary surgery moves (0, 2), (2, 0) and (4, 3). 11

(compare [Qu81], also compare Chapter I, Theorem 2.4).

Proof: It is now straightforward that thickenings of special polyhedra K2
and L2, where L2 is the result of an application of T3 to K2, are related
by a sequence of these moves: By (0,2)-moves, create singular points on
discs which contain horizontal discs of El C K2, inside M3(K2). We may
assume that El captures exactly the singular points prescribed by Figure 12;
then perform the corresponding (4,3)-move on M3(K2). Eliminating pairs
of singular points on discs of L2 - where possible - by (2,0)-moves leads to
M3(L2).

Turn your attention to a situation K2 - V. Again by Chapter I, Remark
2 to Theorem 3.1, in Figure 11 some inner point of D5 is a singular point
of M3(L2). Up to moves (0,2) and choice of size of the local models, we
can assume that D3 and D5 carry one singular point of M2 _ M3(L2) each,
the other discs of E7 none. Comparing how permutations of adjacent sheets
are transported along edges as in the discussion of T3, the piece E6 could be
assumed to carry no singular point, but it is convenient here to perform a
(0,2)-move in order to have two of them on D3 inside Ml _ M3(K2).

Recall that a small disc around a singular point thickens to a cP2 that inter-
sects the surrounding singular 3-manifold in a Moebius strip. The boundary
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line of this Moebius strip can thus be found on 8M13' (see Figure 13a) and
bounds the disc D2 = P2 - Moebiusstrip there. Isotoping the gluing band
of the thickened disc D4 from Figure 11 across D2, we obtain exactly M2
(see Figure 13b): Mi and M2 are in fact homeomorphic. Hence, M3(K2) and
M3(L2) are related by a sequence of (0,2)fl-moves.

(a)

Figure VIII.13.

(b)

Summarizing, we conclude for special polyhedra K2 and L2

If K2 transforms to L2 by a sequence of moves Tl 1, T2 1, T5 1 and T3,
then M3(K2) transforms into M3(L2) by a sequence of moves (0,2),
(2,0) and (4,3).

In other words, the map K2 -+ 1L13(K2) is well defined on equivalence classes.
Because thickening and collapsing are themselves 3-deformations, Lemma
2.1 and the Exercise after the definition of the (4,3)-move imply that the
inverse map M3(K2) -+ K2 is well defined on equivalence classes either. This
completes the proof of Theorem 2.2.

2.2 Examples and discussion

Quinn (see [Qu81], [Ho83]) gives a definition of the singular 3-manifold-moves
in §2.1 in terms of regular neighbourhoods of embedded 1- and 2-dimensional
manifolds as follows:

(0,2)-move: Replace the regular neighbourhood of a properly embed-
ded are with the regular neighbourhood of a properly embedded disc
containing two singular points

and the (4,3)-move as
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(4,3)-move: Replace the regular neighbourhood of a properly embedded
disc containing four singular points with the regular neighbourhood of a
properly embedded disc containing three singular points together with
an embedded arc from the disc to the boundary.

Here, and for the remainder of this section, all embeddings are assumed to
be in general position to singular points, i. e. discs are allowed to contain
singular points only essentially (compare footnote 4) and arcs don't meet
them at all. We refer to [Ho83] for a proof that regular neighbourhoods
of properly embedded discs D2 in singular 3-manifolds are homeomorphic
to cP2#a . . . #a cP2 (as many summands as singular points hit) where the
regular neighbourhood of 8D2 is an orienting curve on 8(cP2#a ... #a cP2)
as well as for the equivalence of the above definitions to those in §2.1.

The (cP2#a . . . #a cP2) constitute the simplest examples for singular 3-mani-
folds. They are all collapsible and thus by Theorem 2.2 equivalent to the
3-ball. Conversely, all collapsible singular 3-manifolds are of this form. The
proof of this generalization of Chapter I, (46), is left as an exercise.

In order to visualize some noncollapsible example, remove a regular neigh-
bourhood of a knotted arc from a ball (obtaining a knot complement) and
plug the top end of the hole with a slightly thickened meridian disc (compare
Figure 253 in [St80]), first without singular points, then with two singular
points on it. In the latter case you have obtained an Mo which by construc-
tion is the result of one (0,2)-move on (the former case) B3. We claim that Mo
is not homeomorphic to (cP2#0 cP2). To see this, remove from Mo an open
regular neighbourhood around the singular points thus obtaining an ordinary

0

manifold Mo C MI , called k.1-bored. A homeomorphism between singular 3-
manifolds induces one between the bored manifolds. But (cP2#a cP2)-bored
has fundamental group ZL2 * ZL2, whereas by the Seifert-van Kampen Theo-

0

rem, ir1(Mo) is the free product of 7Z2 * 7Z2 and a knot group, amalgamated
0

over Z. In particular, the knot group injects into 7r1(M01), whereas Kurosh's
Theorem shows that this is not the case for 7Z2 *

For a further discussion of singular 3-manifolds see Chapter XII, §2.3.



Chapter IX

Cancellation Results for
2-Complexes and 4-Manifolds
and Some Applications

Ian Hambleton and Matthias Kreck

This is a survey chapter. The idea is to summarize some recent work which il-
lustrates in one way or another the connection between topology in dimension
2 and the study of 4-dimensional manifolds. There are almost no new results
and no result is proved completely in the paper. Instead, in each section we
collect together some related statements and motivation, and give a sketch of
some typical or important steps in the proofs.

1 A Cancellation Theorem for 2-Complexes

Any two finite 2-complexes K, K' with isomorphic fundamental groups be-
come simple homotopy equivalent after wedging with a sufficiently large (fi-
nite) number of S2's (see chapter I, (40)). Furthermore, if a : ir1(K,xo) -*
7r, (K', x'0) is a given isomorphism and K, K' have the same Euler character-
istic, then there is a simple-homotopy equivalence f : K V rS2 -+ K' V rS2
inducing a on the fundamental groups. For a given group it, the minimal
number r with the property above for all finite 2-complexes with this funda-
mental group is called the stable range.

It is known that for finite fundamental groups the stable range is always < 2
([Dy81], Theorem 3). The main result of this section is the following.

281
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Theorem 1.1 ([HaKr921]) Let K and K' be finite 2-complexes with the same
Euler characteristic and finite fundamental group. Let a : 7r1(K, xo) -+
ir1(K', x'0) be a given isomorphism and suppose that K ^ Ko V S2. Then
there is a simple-homotopy equivalence f : K -+ K' inducing a on the funda-
mental groups.

The analogous result for "homotopy type" instead of "simple-homotopy type"
was proved by W. Browning ([Br78], 5.4; see also Chapter III, §2).

This is the best possible result in general ([Me76]; see also Chapter III, §2
and this chapter, §4); but for special fundamental groups like cyclic groups
[Me76], [DySi73] or more generally finite subgroups of SO(3) ([HaKr921]; see
also [La91] for the groups D(4n)) it can sometimes be improved (see Theorem
1.3).

Proof: Let h : K V rS2 -* K' V rS2 be a simple-homotopy equivalence
as above, inducing a given isomorphism a on the fundamental groups. We
will prove the theorem inductively and thus we may assume that r = 1.
Our strategy is to construct a simple self-equivalence of K such that, after
composing with this, we obtain h' : K V S2 -+ K' V S2 which fixes the element
pt of 7r2 represented by the S2 factor. Then the composition of h' with the
inclusion and projection gives a homotopy equivalence f : K -* K', which by
the additivity formula for the Whitehead torsion is simple.

To construct such a simple self-equivalence of K, one naturally first considers
the corresponding algebraic problem of constructing an automorphism of 7r2
preserving ir1 and then realizing it by a simple self-equivalence.

We fix some notation. Let A = Z[ir1(K)], L = ir2(Ko) and let P = Po ® P1
be the A-submodule of 7r2(Ko V S2 V S2) generated by ir2(S2 V S2). We note
that the A-module L has (A, Z)-free rank > 1 at all primes p not dividing
the order of 7r1(K ). This notion was introduced in [HaKr921] and means
that there exists an integer r such that (Zr ® L)p has free rank > 1 over Ap,
where we consider Z as A-module via the augmentation map. In this case,
the reason that 7r2(Ko) has (A, Z) -free rank > 1 is that L fits into an exact
sequence

(1) 0->L-3C2--*C1-+Co-,Z-40

with the modules C, = CC(k) finitely generated free A-modules.

More generally, any lattice L with a resolution (1) by finitely generated pro-
jective A-modules CI is unique up to direct sum with projectives. The stable
class is denoted S23Z. Such lattices with minimal Z-rank need not contain
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any projective direct summands over A = Z7r, but rationally contain all the
representations of it except perhaps the trivial one. Then L has (A, 7G)-free
rank > 1 at all primes not dividing the order of ir.

We need the following notation. If M = M1 ® M2 is a direct sum splitting of
an A-module, then E(M1i M2) denotes the subgroup of GL(M) generated by
the elementary automorphisms ([Ba68], p.182). This is the group generated
by automorphisms of the form 1 + f and 1 + g, where f : M1 -> M2 and
g: M2 -4 M1 are arbitrary A-homomorphisms. An element of an A-module
is called unimodular if there is a homomorphism to A mapping it to 1. The
main algebraic ingredient of our proof is the following result whose proof we
will sketch at the end of this section.

Theorem 1.2 [HaKr921], Corollary 1.12 and Lemma 1.16) Let M = P ® L
be an A-lattice, where P = p0A ® p1A = PO ® PP and L has (A, Z) -free rank
> 1. Then the group G = (E(P0i L ® P1), E(P1, L ® Po)) acts transitively on
unimodular elements in L ® P.

To finish our proof, we have to realize elements in G by simple-homotopy self
equivalences of K0 V 2S2 = KV S2 inducing the identity on 7r1. It is enough to
do this for E(P1 i L (B P0). This group is generated by automorphisms of the
form 1 + f and 1 + g, where f : L ® PO P1 and g: P1 -4 L ® PO are arbitrary
A-homomorphisms. Recall that P1 = p1A and L ® Po = xr2(K). Consider
the map Id V u: K V S2 -4 K V S2, where u = (g (pi), p1) E ir2(K V S2) =
7r2(K) ® p1 A. It realizes 1 + g and its restriction to K is the identity and it
also induces the identity on (K V S2)/K = S2. Thus the additivity formula
for the Whitehead torsion implies that the torsion of Id V u vanishes.

To realize 1 + f , we note that f : L ®P1 = ir2(K) = H2 (K; A) -> Pl = A
factors through H2 (K, K1; A), with K1 the 1-skeleton. The reason for this is
that we have an exact sequence

HomA(H2(K, K1; A), A) -+ HomA(H2(K; A), A) -* Ext1 (H1(K1; A), A)

and the last group vanishes since H1(K1; A) is 7G-torsion free. Choose a
factorization map f : H2(K, K1; A) -+ A, where H2(K, K1; A) is a free A-
module generated by the 2-cells of K (appropriately connected to the base
point). Denote this basis by el,.., ek. Now write K = K1 U D2 U ... U D2.
Pinch off the 2-cells to obtain K V rS2 and denote the projection map by
p: K -* K V kS2. Consider the composition map Q: K -4 K V kS2 - K V S2,
where the second map is Id V 1(e1) V ... V f (ek). By construction the induced
map on 7r2 is 1 ® f and the composition K -* K V S2 -4 K is homotopic to
Id. Finally, consider /3V Id: K VS2 -+ K VS2 realizing I+ f. Its restriction to
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S2 and the induced map on K are homotopic to the identity, implying from
the additivity of the Whitehead torsion that ,3 V Id has trivial torsion.

Without proof, we state the full classification result for 2-complexes with fun-
damental group a finite subgroup of SO(3). Recall that the finite subgroups
G of SO(3) are cyclic, dihedral, A4, S4, and A5.

Theorem 1.3 Let it be a finite subgroup of SO(3). If K and K' are finite
2-complexes with fundamental group it and the same Euler characteristic, and
if a : irl (K, x0) -4 7rl (K', xo) is a given isomorphism, then there is a simple-
homotopy equivalence f : K -4 K' inducing a on the fundamental groups.

The proof runs along the same lines as above but needs several additional
steps. For it cyclic or it = 7L/2 x Z/2, this was proved in [Me76], [DySi73].
The result for it = D(4n), the dihedral group of order 4n, has recently been
obtained by P. Latiolais [La91]. Our methods give a new proof in these cases.

Now, we give a sketch of the proof of Theorem 1.2.

Proof of Theorem 1.2: Recall that a lattice is a finitely generated right A-
module that is torsion free over Z. Our proof is based on an improvement
of the Bass transitivity theorem ([Ba68], pp.178-184), which assumed that
M has free rank > d + 2 where d is the Krull dimension of the ring A. In
our special case of lattices over group rings of finite groups (Krull dimension
= 1), we are able to obtain a transitivity theorem assuming only free rank > 2
when the lattice M contains a summand L which has (A, Z)-free rank > 1.
Thus, the improvement here is that a particular type of non-free modules
which occurs geometrically as 7r2(K) can play the role of a free module in
producing algebraic transitivity.

We denote the augmentation map by e: A B = Z. This is a surjective ring
homomorphism. If M is an A-lattice we get an induced homomorphism

e,:M-*M®AZ.
Recall that for an element x E M, OM(x) is the left ideal in A generated by

{f(x) I f E HomA(M,A)}.

If OM(x) = A, we say that x is unimodular. We need two easy facts whose
proofs are omitted.

Proposition 1.4 Let M be an A-lattice and A' = A/At for an ideal t E Z
such that the localized order A, is maximal. Then the induced map

HomA (M, A) -4 HomA' (M', A')

is surjective, where M' = M/Mt.
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Proposition 1.5 ([Ba73], (2.5.2), p.225) If C is a semisimple algebra, then
for each a, b E C there exists r E C such that C(a + rb) = Ca + Cb.

Now let x = poa+plb+v E M be a unimodular element, with p = poa+plb E
P and v E L, so that O (x) = Aa + Ab + 0 (v). Since the elementary matrices
En(Z) act transitively on unimodular elements in Z" for n > 2, we may
assume that E.(x) = E.(po). In the proof, we use the stability assumption on
L to move x so that its component in p0A ® L is unimodular. Then we move
x to po to prove the statement about unimodular elements in M. At each
step, we use only elements a of G fixing e.(po).

Lemma 1.6 Let S be a finite set of (non-zero) primes in 7L, and A = A/gA
where g is the product of all the primes p E S. Then after applying an element
T E E(P1 ® L, Po) to x, O(x) = Ad = A and c. (x) = e.(po).

Proof: The semi-simple quotient ring A/Rad A = C x C', where C =
B/RadB and C' is a complementary direct factor. Here "Rad" denotes the
Jacobson radical [CuRe62]. Since E.(x) = e.(po), a projects to 1 in the C
component of the semisimple quotient. Since Aa + 0(p1b + v) = A, there
exists c E 0(p1b + v) such that Aa + c contains 1, and c projects to zero in
B. By Proposition 1.5, there exists z E A with A(a + zc) = A( mod g) and
a map g: P1 ® L -+ poA C M with g(p1b + v) = pozc. Extend g to a map
from M to M by zero on the complement. Then T = 1 + g is an element of
E(P1 ® L, Po) and T(x) has the desired properties.

We apply Lemma 1.6 to the set S of primes p E Z at which A is not maximal,
or L does not have (A, B)-free rank > 1.

Lemma 1.7 If x = p0a + p1b + v E M is a unimodular element for which
Aa + gA = A, then after applying an element r E E(P1i L) we have x =
p0a + p1b + v with p0a + v unimodular and E.(x) = E.(po).

Proof: Let t C Z denote the ideal which is maximal among those such that
At C Aa. It is not hard to see that g is relatively prime to t, and so A, is a
maximal order.

Now we project to the semilocal ring A' = A/At. This is a finite quotient
ring of the maximal order A, and so the projection t: A' -* B' splits and
A' = B' x C'. Since over the B' factor a projects to 1, we have (Aa)' = A'.
Over the complementary factor C' we use a suitable T E E(p'C', L'), so that
after applying T we achieve the condition

A'a' + 0(v') = A'
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over both factors of A'. This is an application of Proposition 1.5 to the
component of x in L' ® piC' using the fact that C' C L'. The necessary
homomorphism g E HomA'(PP, L'), which is the identity over B', can be
lifted to HomA (P1, L) since P1 is projective and extended to M by zero on
poA ®L.

We now lift the relation above to A using Proposition 1.4 and obtain

Aa+O(v)+At=A.

But At C Aa so v + poa is unimodular.

We now complete the proof of Theorem 1.2 by the following:

Lemma 1.8 Let x = poa + pl b + v and e,. (x) = po. Suppose that z = poa + v
is unimodular, and write L ® P0 = zA ® Lo. Then there exist elementary
automorphisms 7-1 E E(zA, PI), T2 E E(PI, PO), T3 E E(P0i Pl) and T4 E
E(P0 i L) such that T4T2 1T3T2T1(x) = p0 and the product fixes e,, (p0) .

Proof: This is the argument of [Ba68, pp. 183-184]. Let g1(z) = pl(1-a-b),
with gl(L0) = 0. Define g2(pi) = po, g3(po) = p1(a - 1), and g4(po) = -v,
where the homomorphisms are extended to the obvious complements by zero.

If Ti = 1 + gi, then
T4T21T3T2T1(x) =P0

The product fixes and lies in E(P1, PO ® L).

This finishes the proof of Theorem 1.2.

2 Stable Classification of 4-Manifolds

1-1

There is a close analogy between the stable classification of homotopy types
of 2-complexes and homeomorphism types of 4-manifolds. To indicate this
analogy, consider the thickening functor from finite 2-complexes to closed 4-
manifolds obtained by embedding a 2-complex X as polyhedron in R5 and
taking the boundary of a smooth regular neighborhood (compare Chapter
I, §3). If two 2-complexes are simple-homotopy equivalent, the correspon-
ding 4-manifolds are s-cobordant (implying homeomorphic, if the fundamen-
tal groups are poly-(finite or cyclic) [Fr84]) and we denote the corresponding
s-cobordism class by M(X). If we replace the 2-complex by its 1-point uni-
fication with S2, the corresponding 4-manifold changes by connected sum
with S2 x S2. This indicates the analogy of stable equivalence classes of
2-complexes with the following notation for 4-manifolds.
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Definition 2.1 Two smooth (topological) closed 4-manifolds MO and M1 are
stably diffeeomorphic (homeomorphic) if the connected sums Mo#r(S2 x S2)
and Ml#r(S2 X S2) are diffeomorphic (homeomorphic) for some integer r.

Since the smooth stable s-cobordism theorem (implying that two s-cobordant
4-manifolds are stably diffeomorphic) holds [Qu83], the stable diffeomorphism
class of M(X) is determined by the stable simple-homotopy class of X and
so (see §1) by 7rl(X).

Compared to the 2-complexes, it is not true that for 4-manifolds the stable
classification needs only the fundamental group and the Euler characteristic
as invariants. At least one has to control basic properties like orientability
and existence of a spin-structure and in addition for oriented manifolds the
signature.

The following definition turns out to be very useful for coding the fundamental
group together with orientability and spin-structure information. Let M be
a topological 4-manifold. Abbreviate ir1(M) = 7r. Let u : M -> K(7r,1) be a
classifying map of the universal covering M. Then we have an isomorphism
u* : H1(7r; Z/2) --> H1(M; Z/2) and an exact sequence 0 -4 H2(7r; Z/2) -*
H2(M; Z/2) -+ H2(M; Z/2) [Br82]. Thus we can pull back wi(M) by u from
a class denoted w1 E H1(7r;7G/2) and, if w2(M) = 0, w2(M) from a class
denoted w2 E H2(7r; Z/2). If w2(M) # 0, we define w2 = oo. There is an
obvious notion of isomorphism classes of the triple (ir, wl, w2) and we denote
the isomorphism class by [yr, w1, w2].

Definition 2.2 For a topological 4-manifold M, we call the isomorphism
class [7r, w1i w2] the algebraic normal 1-type.

The algebraic normal 1-type determines the geometric normal 1-type , called
the normal 1-type , as follows. We begin with the smooth case. Let M be a
smooth manifold. If w2 = oo (corresponding to w2(M) # 0), then we define
the normal 1-type as follows. Consider the real line bundle E -+ K(-7r, 1) with
wl (E) = w1 and the composition

K(7r,1) x BSO Exp4BO x BO--4®BO,

where E: K(7r,1) -4 BO is the classifying map of the stable bundle given by
E and ® is the H-space structure on BO given by the Whitney sum. We
denote the corresponding fibration by B[ir, wl, oo]. If w2 54 oo, we define the
normal 1-type as the fibration p : B(7r, wl, w2) -> BO given by the following
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pullback square

B(ir, w1, w2) K(7r,1)

p1 1 w1 X w2

BO
wi(EO)xw2(EO)

K(7G/2,1) x K(Z/2, 2).

where w,(EO) are the Stiefel-Whitney classes of the universal bundle and we
interpret w; as maps to K(7G/2, i). The fibre homotopy type of

p : B (7r, W1, W2) --+ BO

is determined by the isomorphism class of (7r, w1, w2) and is denoted by
B[ir, w1, w2], the normal 1-type.

If w1 = 0, B[7r, 0, w2] factorizes over BSO and we choose one of the possible
lifts. This way we consider B[7r, 0, w2] as fibrations over BSO. To deal the
oriented case (wl = 0) and the non-oriented case simultaneously we write
p : B(7r, wl, w2) -# B(S)O.

For topological manifolds, one can make the obvious changes (replace the lin-
ear normal bundle by the topological normal bundle given by a map
v : M -4 B(S)Top) to obtain from the algebraic normal 1-type the normal
1-type p : B(7r, W1, w2) -* B(S)Top.

The following theorem plays a central role in the stable classification of 4-
manifolds. Given a fibration B -+ B(S)O, abbreviated for short as B, we
consider the B-bordism group Sl,, (B) consisting of bordism classes of closed
smooth n-manifolds, which are oriented, if the fibration is over BSO , together
with a lift v over B of the normal Gauss-map v : M -* B(S)O [St68]. Such a
lift is called a normal 1-smoothing if v is a 2-equivalence. It is easy to check
that, if the algebraic normal 1-type of M is [7r, w1, w2], by construction of
B[7r, 0, w21, M admits a normal 1-smoothing in B[ir, wl, w2]. Similarly, for
topological manifolds, one starts with a fibration B -4 B(S)Top, abbreviated
for short as BTO1, and introduces the analogous bordism group of topological
manifolds denoted Sl,n,(BTop)

Theorem 2.3 ([Kr85]) Two smooth (topological) 4-manifolds Mo and M1
with the same algebraic normal 1-type [7r, w1, w2] are stably diffeomorphic
(homeomorphic), if and only if they have the same Euler characteristic
and if they admit normal 1-smoothings vo and v1 respectively such that
(Mo, To) and (M1, v1) represent the same bordism class in Q4(B[ir, w1, w2]) (in
114(BTop[ir, wi, w21))
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If one wants to apply this theorem, one has to compute the bordism group
114(B[7r, wl, w2]) or f24(BTop[ir, wl, w2]). In general, this is not easy; but, un-
der some assumptions, it follows from the Atiyah-Hirzebruch bordism spec-
tral sequence ([CoF164]). For example, if w2 = oo (i.e., w2(M) # 0) and
wl = 0, then H4(B[ir, wi, w2]) = 114(K(ir,1)) and f14(BTop[1r, wi, w2]) _
SZ4Top)(K(7r, l)), where the right side is the oriented smooth (topological)
singular bordism group in K(ir, l). In this situation the choice of a nor-
mal 1-smoothing is equivalent to the choice of a map u : M -4 K(ir, 1)
inducing an isomorphism on 7 or equivalently a representative of a classi-
fying map of the universal covering. The different choices are obtained by
composing with an automorphism of it acting as self equivalences of K(ir,1).
Now, 1, = 0 for 1 < i < 3 and Ho = SZ4 = 7G, where in the last case
the isomorphism is given by the signature (cf [MiSt74]). In the topological
case, one has an additional term Z/2 detected by the Kirby-Siebenmann
obstruction KS [KiSi77]. Thus, from the Atiyah-Hirzebruch spectral se-
quence, one has S14(K(ir,1)) = Z ® H4(K(ir,1); Z) in the smooth case, and
S (Top)(R (7r,1)) = Z ® H4(K(ir,1); Z) ® Z/2 in the topological case. The
isomorphism is given by the signature of M, the image of the fundamental
class in H4(K(7r, 1); Z), and, in the topological case, in addition the
KS-invariant. This proves the first part of the following theorem.

Theorem 2.4 Two oriented smooth (topological) 4-manifolds Mo and Ml
with the same fundamental group and with WO;) 0 0 are stably diffeomor-
phic (homeomorphic), if and only if they have the same Euler characteristic
and signature, if u.(Mo) = u. (MI) E H4(K(ir,1);7G)/Out(7r) and, in the
topological case, KS(M0) = KS(M1).

Arbitrary values of the signature and the class in H4(K(7r,1); Z)/Out(er) and,
in the topological case, of KS E Z/2 can be realized.

Proof: We are left with the realization statement. This follows since by
surgery any element in the corresponding bordism group can be realized by a
manifold, such that u induces an isomorphism of 7r and with w2(M) i4 0. 0

One can use the same surgery method to say much more about the stable clas-
sification of 4-manifolds. For instance, if the manifolds M; are equipped with
spin-structures, they are stably diffeomorphic (homeomorphic) if and only if
they have the same Euler characteristic and (Mo, uo) and (Ml, ul) represent
the same element in the singular smooth (topological) bordism group of spin-
manifolds together with maps to K(7r,1). But this bordism group is much
harder to compute and a general answer is not known. In the next theorems,
we list some results for manifolds with special fundamental groups which can
easily be obtained along these lines of arguments.
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Theorem 2.5 Let Mo and Ml be smooth (topological), oriented 4-manifolds
with w2(Mi) =0 andirl(Mi) _ir. If Hi (7r, Z /2) = 0 fort <_i<3, thenMo
and Ml are stably diffeomorphic (homeomorphic) if and only if they have the
same Euler characteristic, signature, u.(Mo) = u. (MI) E H4(K(ir,1);Z)/
Out(ir) and, in the topological case, if KS(Mo) = KS(M1).

If M is smooth, then the signature, abbreviated by o, is by Rohlin's Theorem
divisible by 16; and arbitrary values divisible by 16 of the signature and the
class in H4(K(7r,1); Z)/Out(7r) and, in the topological case, of KS E Z/2 can
be realized.

Theorem 2.5 in particular covers all finite fundamental groups of odd order.

Theorem 2.6 Let Mo and Ml be smooth (topological), oriented 4-manifolds
with w2(Mi) = 0 and cyclic fundamental group 7r1(Mi) = ir. Then Mo and
Ml are stably dif'eomorphic (homeomorphic) if and only if both admit a spin
structure or both do not admit a spin structure and they have same Euler
characteristic, signature and, in the topological case, if KS(Mo) = KS(M1).

The signature is always divisible by 8 and in the smooth case, if w2(M) 0 0,
every integer divisible by 8 can be realized and, if w2 (M) = 0, all integers
divisible by 16 can be realized. In the topological case, every integer divisible by
8 can be realized and, if w2(M) # 0, one can prescribe KS E Z/2 arbitrarily,
whereas, if w2(M) = 0, KS = o(M)/8 mod 2.

3 A Cancellation Theorem for Topological
4-Manifolds

In this section we prove a cancellation theorem for topological 4-manifolds
which is analogous to Theorem 1.1.

Theorem 3.1 ([HaKr922], Theorem B) Let X and Y be closed oriented to-
pological 4-manifolds with finite fundamental group. Suppose that for some
r the connected sum X#r(S2 X S2) is homeomorphic to Y#r(S2 X S2). If
X = Xo#(S2 x S2), then X is homeomorphic to Y.

Note that the assumption that X splits off one S2 X S2 cannot be omitted,
in general. There are, for example, even simply-connected closed topological
4-manifolds that are stably homeomorphic but not homeomorphic because
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they have non-isometric intersection forms. Examples of distinct but stably
homeomorphic manifolds with finite fundamental group and the same equiv-
ariant intersection form were constructed in [KrSc84]. We will discuss these
examples in the next section.

Before we prove this theorem, we formulate the following immediate corollary
to it and Theorems 2.4, 2.5 and 2.6.

Corollary 3.2 Let MO and M1 be closed oriented topological manifolds with
finite fundamental group 7r, such that one of the three conditions are fulfilled:
i) w2(Mi) # 0 , ii) w2(Mi) = 0 and it cyclic, iii) Hi(ir, Z/2) = 0 for 1 < i < 3.
Suppose that MO = X#(S2 X S2). Then MO is homeomorphic to M1 if and
only if both admit a spin structure or both do not admit a spin structure and
they have same Euler characteristic, signature, Kirby-Siebenmann obstruction
and E H4(K(7r, 1); Z)/Out(7r).

As in the proof of Theorem 1.1, there is an algebraic and a geometric part in
the proof of Theorem 3.1. We begin by stating the algebraic input. As in the
last section, we set A = Z[ir] and we equip A with the anti-involution a H a
mapping an element in it to its inverse. As common in algebra, we consider
right A-modules but note that with the help of the anti-involution one can
pass from right to left modules and vice versa. Thus, whenever the module
comes naturally with a left action, we pass to the corresponding right action.
In particular, we do this for the dual of a right module V , which we denote
by V. A quadratic A-module V is an A-module together with a hermitian
form (-, -) and a quadratic refinement q in the sense of ([Wa70], Chapter 5)
with values in A/{a - a}. It has (A, 7G)-hyperbolic rank > 1 at a prime p E Z
if there exists an integer r such that (H(Zr) ®V), has free hyperbolic rank
> 1 over Ap. Here the hyperbolic form H(W) of an A-module W is the form
on W ® W which is trivial on W and W and evaluation between W and W,
and where the quadratic refinement vanishes on W and W. The hyperbolic
rank is > s if the quadratic form splits off H(A8).

We need various subgroups of the isometries on a quadratic module. If P =
p0A ® p1A is A-free of rank 2, we denote by E(P) the group generated by
elementary triangular matrices having 1 on the diagonal and by H(E(P) the
induced isometries on the hyperbolic space H(P). A transvection ([Ba73],
p.91) of V is a unitary automorphism o = Qu n v : V -* V given by

o(x) = x + u(v,x) - v(u,x) - ua(u,x),

where u, v E V and a E A satisfy the conditions

q(u) = 0 E A/{a - a}, (u, v) = 0, q(v) = a E A/{a - a}.
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For any submodule L C V,

Ll={xE VI(x, y) = 0 for all yEL}.

If V = V' I. V" is an orthogonal direct sum, with L' C V' a totally isotropic
submodule (i.e. h(x, y) = 0 (mod {a - a}) for all x, y E L'), and L" C V",
then we define

EU(V', L'; L") _ E L' and v E L")

and in the special case V = P 1 P

EU(H(P)) = EU(P, P, P).

A hyperbolic plane is a quadratic module isomorphic to H(A). A hyperbolic
pair consists of two vectors u and v with q(u) = q(v) = 0 and < u, v >= 1.

Theorem 3.3 ([HaKr922], Theorem 1.20 and Lemma 1.21) Let V be a quad-
ratic module which has (A, Z) -hyperbolic rank > 1 at all but finitely many
primes, and put M = V 1 H(P), where P = p0A ®p1A is A-free of rank 2.
Then

G = (EU(H(P), Q; V), H(E(P)) EU(H(P)))

where Q = P or P, acts transitively on the set of q-unimodular elements of
a fixed length, and the set of hyperbolic pairs and hyperbolic planes in M.

Here an element x E M is q-unimodular if there exists y E M such that
(x, y) = 1.

This theorem is the quadratic analogue of Theorem 1.2 and the proof uses
the same philosophy. We will apply this algebraic cancellation theorem to
prove Theorem 3.1. We need some preparations.

Proposition 3.4 Let X be a closed oriented topological 4-manifold with fi-
nite fundamental group, and let A = Z[7r1(X)]. There is an A-submodule V
of 7r2(X) which supports a quadratic refinement of the intersection form on
X. In addition, V has (A, Z) -hyperbolic rank > 1 at all but finitely many
primes.

Proof: Since our algebraic result uses quadratic modules and the intersection
form on 7r2(X) does in general not admit a quadratic refinement, we take the
submodule V = ker ((w2, -) : ir2(X) --> Z/2) on which the intersection form
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SX has a quadratic refinement q : V -> A/{v - v} defined as in [Wa70,
Chapter 5].

Next we check that V has (A, Z)-hyperbolic rank > 1 at all odd primes not
dividing the order of irl (X). Since X is a closed manifold, the components of
the multi-signature of Sx are all equal (compare [Le77]). On the other hand,
from [HaKr88, 2.4] we know that 7r2(X)(p) is isomorphic to the localization of
I ® I' ® A', where I denotes the augmentation ideal of A. It follows that the
components of Sx are indefinite at all non-trivial characters of irl(X). Since
SX is unimodular when restricted to Vp, for p as above, we conclude that V
has (A, Z) hyperbolic rank > 1 at all odd primes not dividing the order of
7r1(X).

We need the following result of Cappell-Shaneson. In the statement a stan-
dard basis for the summand H2(S2 x S2, Z) of H2(X#(S2 X S2), Z) is denoted
by {po, qo}.

Theorem 3.5 ([CaSh7l],1.5) Let X be a compact, connected smooth (to-
pological) manifold of dimension four, and suppose X = Xo#(S2 X S2)
for some manifold X0. Let w E H2 (X; A) = ire (X) with w2 (w) = 0 and
let a E A = 7G[irl(X)] be any element such that q(w) - a(mod {a - a}).
Then there is a base point preserving diffeomorphism (homeomorphism) 0 of
X#(S2 X S2) with itself which preserves local orientations and induces the
identity on 7rl(X#(S2 x S2)), so that po, c*(qo) = qo +w-poa, and

.ford E H2(X;A).

In order to prove Theorem 3.1, we need to realize transvections by homeo-
morphisms of X#r(S2 X S2). For the rest of this section, we fix the notation

Kir2(X) = ker ((w2,-) : ir2(X) Z/2)

for the submodule of the intersection form on H2(X; A) on which a quadratic
refinement is defined. We denote by H(P0), where P0 = poA, the summand
of H2(X#(S2 X S2); A) given by H2(S2 X S2; A). As further copies of S2 X S2
are added to X by connected sum, we denote all these hyperbolic factors of
the intersection form by H(P). Note that Theorem 3.5 allows us to realize
the transvections 0 ,a,v by self-homeomorphisms of X#(S2 X S2) for any
v E K7r2(Xo), in the case when X = Xo#(S2 X S2). Cappell and Shaneson
use this to realize many isometries (see [CaSh7l, Theorem A2]), but the
conclusions given are not in the exact form we need.

Corollary 3.6 Suppose that K7r2(X) = Vo I Vi with Vo non-singular
under the intersection form Sx. Then, for any transvection up,a,v on
Kir2(X) 1 H(Po) with p E Vo 1 P0 and v E K7r2(X), the stabilized isometry
Qp,a,v ED Id2(s2Xs2) can be realized by a self-homeomorphism of X#3(S2 X S2).
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Proof: First, we consider a unimodular isotropic element p E Vo I Po. Since
Vo 1 H(P0) is non-singular, p is automatically a hyperbolic element and
thus by Freedman [Fr84] we can re-split X#(S2 X S2) = X'#(S2 X S2) such
that p is represented by S2 x *. Thus op,Q,v ® Ids2Xs2 can be realized by a
self-homeomorphism on (X'#(S2 X S2))#(S2 X S2) for all v E Kir2(X) with
(v, p) = 0.

Next, we consider the transvection 0P,o,,, for an arbitrary p E Vo 1 Po, but
assume that v E Kir2(X) is isotropic. Then we write p = Epi with pi E Vo 1
P0 unimodular and (v,pi) = 0. This uses the fact that A = 7L[7rl(X)] and Po
A. We obtain: O p,o,v = ov,o,-P = Ov,o,- F, Pi = U t7p ,o,v. Thus op,o,v ® I ds2 X S2

is realizable by a self-homeomorphism on (X#(S2 X S2))#(S2 X S2), since
opi,o,v#Ids2 X g2 is realizable.

Finally, we realize an arbitrary transvection UP,a,v#Id2(s2xs2), of the form
required, by a homeomorphism on (X#(S2 X S2))#(S2 X S2). We use the
fact that v can be expressed as v = E vi with vi E K9r2(X) 1 H2 (S2 X S2; A)

isotropic and (vi, p) = 0. Thus ap,a,v ® Id2(s2xs2) = II op,o,vi ® Ids2Xs2 which
by the considerations above is realizable.

Corollary 3.7 Let X0 be a topological 4-manifold, V = K7r2(Xo) and con-
sider an element cp E EU(H(P), Q; V), for Q = P, P, as an isometry of
the intersection form of Xo#2(S2 X S2). Then the stabilized isometry cp
Id2(s2xs2) can be realized by a self-homeomorphism of Xo#4(S2 X S2).

Proof: By definition, the group EU(H(P), Q; V) is generated by transvec-
tions op, a, v with p E P or P and v E V fulfilling the conditions of a transvec-
tion. It is enough to consider the case p E P. Now Corollary 3.6 applies with
the splitting K7r2(X) = V I H(A) with H(A) the first summand of H(P).
This shows that for each cp E EU(H(P), Q; V), the isometry cp ® Id2(s2Xs2)
can be realized by a self-homeomorphism on (Xo#2(S2 X S2) )#2(S2 X S2).

0

Proof of Theorem 3.1: By induction, it is enough to consider the case r =
1. Let f : X#(S2 X S2) -4 Y#(S2 X S2) be a homeomorphism. We will apply
Theorem 3.3 and Corollary 3.6 to show that there is a self-homeomorphism g
of X#3(S2 X S2) such that (f #Id) g induces the identity on the hyperbolic
form corresponding to # 3(S2 x S2) in H2(X#3(S2 X S2); A). Then it follows
that X and Y are s-cobordant ([Kr85], Theorem 3.1). By Freedman [Fr84],
X and Y are homeomorphic.

To begin, we apply Theorem 3.3 to

V ® H(P) 9 H2(Xo#2(S2 X S2); A),
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where P = A ® A and V = Kir2(Xo). This gives an isometry

y E G = (EU(H(P), Q; V), H(E(P)) EU(H(P))),

where Q = P or P, such that f. cp induces the identity on H2(2(S2 X S2); A) C_
H2(Xo#2(S2 X S2); A). We finish the proof by showing that for each cp E G,
cp ® Id can be realized by a self-homeomorphism on Xo#4(S2 X S2). Note
that by definition G C Aut(H2(Xo#2(S2 X S2) ; A)).

The elements of EU(H(P), Q; V) are handled by Corollary 3.7. In addition,
we have to realize an arbitrary element in H(E(P)) EU(H(P)), stabilized by
the identity, by a self-homeomorphism of (Xo#4(S2 x S2)). This follows again
from Corollary 3.6 and the considerations above since this group is generated
by transvections Op,a,x with p E Po or Pl ([Ba73], p.142-143).

As in the case of 2-complexes we want to finish this section by stating without
proofs two classification results for oriented 4-manifolds with special funda-
mental groups which follow from more refined cancellation results and Theo-
rems 2.5 and 2.6.

We begin with the complete classification for finite cyclic fundamental groups.
The following notation is useful for encoding the different possibilities of the
vanishing of the second Stiefel-Whitney class. The w2-type is I, if w2 (M) # 0,
If, if w2(M) = 0, or III, if w2(M) = 0 and w2(M) 0 0.

Theorem 3.8 ([Fr84], 1-connected case; [HaKr923], general case) Let M be
a closed, oriented !-manifold with finite cyclic fundamental group. Then M
is classified up to homeomorphism by the fundamental group, the intersection
form on H2(M, Z)/Toys, the W2-type, and the Kirby-Siebenmann invariant.
Moreover, any isometry of the intersection form can be realized by a homeo-
morphism. All invariants can be realized except in the case of w2-type II,
where KS is determined by the intersection form.

Next we give an explicit bound for the difference between the Euler charac-
teristic e and the absolute value of the signature v for odd order fundamental
groups guaranteeing cancellation. Combined with Theorem 2.5, this gives
a homeomorphism classification under these stability assumptions. For any
finite group ir, let d(7r) denote the minimal Z-rank for the abelian group
5 2 3 7 6 ® Z. Here we minimize over all representatives of St3Z, obtained from
a free resolution of length three (see section 1) of Z over the ring Z7r. Let
b2(M) denote the rank of H2(M; Z).

Theorem 3.9 [HaKr923]) Let M be a closed oriented manifold of dimension
four, and let 7rl(M) = 7r be a finite group of odd order. When w2(M) _
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0 (resp. W2(M) 0 0), assume that b2(M) - 10r(M)l > 2d(ir), (resp. >
2d(7r) + 2). Then M is classified up to homeomorphism by the signature, Eu-
ler characteristic, type, Kirby-Siebenmann invariant, and fundamental class
in H4(ir, Z)/Out(7r).

The type is the parity (even or odd) of the intersection form on M.

4 A Homotopy Non-Cancellation Theorem
for Smooth 4-Manifolds

In the case of 2-complexes, it was not easy to give non-cancellation examples,
e.g., of 2-complexes X and Y such that X V S2 is (simple-) homotopy equiv-
alent to Y V S2 but X not (simple-) homotopy equivalent to Y. The first
examples were only published in 1976 (see references in Chapter I, following
(40)).

In the case of topological 4-manifolds, the existence of closed topological 4-
manifolds X and Y such that X#(SZ x S2) is homeomorphic to Y#(S2 x
S2) but X not homeomorphic or equivalently not homotopy-equivalent to Y
follows easily from Freedman's classification of 1-connected 4-manifolds (see
Theorem 3.8). There are for instance 1-connected topological 4-manifolds X
with intersection form E8 ® E8 and Y with intersection form E16, where E8
and E16 are the indecomposable even negative definite unimodular forms over
Z with signature 8 and 16, respectively. These forms become isometric after
adding a hyperbolic plane [Se73] and thus by Theorem 3.8, X#(S2 X S2) is
homeomorphic to Y#(S2 X S2) but X is not homeomorphic to Y.

In the case of smooth 4-manifolds with finite fundamental group, it is not so
easy to find non-cancellation examples, which here means manifolds X and
Y such that X#(S2 X S2) is diffeomorphic to Y#(S2 X S2) but X is not
diffeomorphic to Y. The method used above in the topological category find-
ing manifolds with non-isometric definite intersection form which are stably
homeomorphic cannot work in the smooth category since by Donaldson's The-
orem [Do83] the only definite forms realized as intersection forms of smooth
4-manifolds are up to sign the standard Euclidean forms.

In this situation it is natural to try to make use of the non-cancellation
examples of 2-complexes by applying the thickening construction (see the
beginning of §2). This was carried out in [KrSc84] and we summarize these
examples.
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Here is the main result. Recall that we denote the boundary of a thickening
of a 2-complex X in R5 by M(X).

Theorem 4.1 ([KrSc84], Theorem 111.3) Suppose G = (7L/p)s is elementary
abelian where p is a prime congruent to 1 mod 4 and s > 1 is odd. Then
there exist finite 2-dimensional CW complexes X and Y such that M(X) and
M(Y) are not homotopy equivalent but M(X)#r(S2 x S2) is diffeomorphic
to M(Y)#r(S2 X S2) for r > 0.

Remark: The homotopy type of 4-manifolds with odd order fundamen-
tal group is determined by the quadratic 2-type consisting of the quadru-
ple (7rl, 7r2, k, s), where ire has to be considered as module over 71, k E
H3 (ir1 i 7r2) is the first k-invariant and s is the equivariant intersection form on
7r2 [HaKr88], [Ba88]. In the examples that we will describe in the following,
the triple (7r1, 7r2, s) is isomorphic for M(X) and M(Y) ([KrSc84], p.21) and
thus the manifolds are distinguished by the k-invariant, but this is not the
way we prove our result.

The simplest examples for our theorem are derived from Metzler's theorem,
a special case of which is stated below (see also Chapter III, §§1 and 2).
Note, that a presentation of a group defines a 2-complex with this group
as fundamental group by attaching to a wedge of r circles, r the number of
generators, 2-cells according to the relations.

Theorem 4.2 ([Me76]) For s > 2 and (q, p) = 1, the presentations

< a1 i ..., as; ap = 1, [a?, a2] = 1, [ai, a7] = 1, 1 < i < i < s, (i, j) # (1, 2) >

of (7G/p)s determine 2-complexes X (q). X (q) and X (q') are not homotopy-
equivalent, if q # ±ks-lq' mod p for all k.

If one considers the boundary M(X(q)) of a thickening of X (q) one gets
examples of non-cancellation examples of smooth 4-manifolds, if Metzler's
invariant or some weakening of it survives as invariant of the thickening. We
don't know, if the full invariant survives but some partial information does.
Theorem 4.1 is a consequence of the following Proposition.

Proposition 4.3 Let X (q) be as in Theorem 4.2. Then, ifs > 1 is odd and
p is a prime congruent to 1 mod 4, M(X (q)) and M(X (q')) are not homotopy
equivalent if qqi-1 is not a square mod p.
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Since M(X(q)) and M(X(q')) are stably diffeomorphic, Theorem 4.1 follows.

Proof: In the following, we give a sketch of the proof of Proposition 4.3. For
the details see [KrSc84].

Since 7rl (X (q)) = irl (M(X (q)) and irl (X (q')) = 7rl (M(X (q')) are isomorphic
we choose an isomorphism, a polarization, between them and denote the
group by it.

Denote the cellular chain complex over A = 7Z [7r] of the universal covering of
M(X(q)) and M(X(q')) by C and C'. Then it is easy to show by standard
homological algebra that there is a chain map h : C -+ C' inducing the
identity on Ho (..; 7L) and H4(..; Z). Denote the 0th Tate cohomology of an
A-module M by H°(M) = M"/N(M), where M'r is the fixed point set and
N(M) consists of the norm elements. If f is an A-module homomorphism we
denote the induced map between the Tate cohomologies by H°(f ). If h is a
chain map as above, then H°(h.) is an isomorphism.

Consider the equivariant intersection form on the middle homology of the
universal covering. This induces an equivariant symmetric bilinear form on
H2(X(q))" = H2(C)r. Any orientation preserving homotopy equivalence
which induces the given isomorphism on 7r1 induces a map respecting this
bilinear form.

Thus, if M(X(q)) and M(X (q')) are orientation preserving homotopy equiv-
alent inducing the given isomorphism on -7rl, then H°(h.) is induced by an
isometry from H2(C) r to H2(C') r.

Thus we get an invariant of polarized oriented homotopy types by the set of
all isomorphisms H°(h.) modulo those induced by isometries from H2(C) r
to H2(C')". Dividing out the different choices of polarizations equivalently
of automorphisms of it and using the fact that M(X) always admits an ori-
entation reversing diffeomorphism (M(X) can be described as a double of a
4-dimensional thickening and interchanging the two halves gives the orienta-
tion reversing diffeomorphism), one gets a homotopy invariant.

The main work of [KrSc84] is to show that this invariant is non-trivial if qq'-'
is not a square mod p. For this one can rather easily compute a representa-
tive of this invariant but it is not so easy to decide when it is non-trivial. We
get our result by weakening the invariant, namely we pass to an L-theoretic
invariant. More precisely, it is not difficult to show that the restriction of the
intersection form to H2(C)" is up to scaling by a constant a hyperbolic form
over Z. It induces the hyperbolic form over 7L /p on H°(H2(C)). After appro-
priately identifying H2(C) with H2(C') our invariant given by H°(h.) gives
an automorphism of determinant 1 of H°(H2(C)), which turns out to be an
isometry. Stable equivalence classes of isometries of determinant 1 represent
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elements in the Wall group LO(Z/p) [Wa70]. If M(X(q)) and M(X(q')) are
homotopy equivalent, this element in L°(7G/p) is induced from an isometry of
H2(C). Since an isometry of a scaled hyperbolic form over Z is an isometry of
the hyperbolic form itself it is in the image of the reduction map from L°(76)
to L°(7G/p).

For the manifolds M(X(q)) and M(X(q')), H°(H2(C)) is isometric to the
hyperbolic form on Z/p and the invariant in LO(Z/p) is represented by a
diagonal matrix of rank 2 over Z/p with entries (qq'-1) and (qqi-1)-1. The
different choices of a polarization of the fundamental groups correspond to an
action of Aut(ir). It turns out that Aut(ir) acts on H°(H2(C)) by diagonal
matrices of rank 2 over Z/p with entries rs-1, rl-s for some r prime to p.
Thus, if s is odd, the action is trivial.

To finish the proof, we need the following information from [Wa76]. The
Wall group L° (Z) is isomorphic to Z/2 generated by the diagonal matrix of
rank 2 with entries (-1, -1). The Wall group L°(Z/p) is isomorphic to 7L/2
generated by a diagonal matrix of rank 2 with entries (r, r-1), where r is a
non-square mod p. Thus, if p is congruent to 1 mod 4, the reduction map is
trivial finishing the argument.

Remark: Comparing Theorem 4.2 and Proposition 4.3 one sees that the in-
variant used there is considerably weaker than Metzler's. It would be interest-
ing to know if one actually is losing information by passing from 2-complexes
to boundaries of 5-dimensional thickenings.

5 A Non-Cancellation Example for Simple-
Homotopy Equivalent Topological 4-Mani-
folds

The non-cancellation examples in Section 4 were non-homotopy equivalent
but stably diffeomorphic smooth 4-manifolds. As mentioned before one can
get other examples from exotic structures on closed smooth oriented 4-mani-
folds. They are homeomorphic, not diffeomorphic but stably diffeomorphic.
Such examples are much more complicated than the ones described in Section
4 since the only known way to distinguishing them is by Donaldson invariants.
We will describe many exotic structures in Section 6.

The most delicate question one can ask in the topological category in connec-
tion with non-cancellation examples is whether there are simple- homotopy
equivalent non-homeomorphic but stably homeomorphic topological closed
4-manifolds. Recently, in joint work with Peter Teichner, we found the first
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examples of this type. We will describe them here. The examples constitute
another link between 2-dimensional topology and 4-manifolds since they are
distinguished by a codimension 2 invariant.

We begin with a notation. According to Freedman there exists a unique
non-smoothable 4-manifold which is homotopy-equivalent to CP 2, the Chern
manifold denoted CIHI. We will see that there is a similar manifold corres-
ponding to IRF', a unique non-smoothable 4-manifold homotopy equivalent
to RP`', denoted Rffil.

Theorem 5.1 ([HaKrTe92]) The simple-homotopy equivalent closed 4-mani-
folds RIB`'#CP2 and RIHI#CIHI are not homeomorphic but homeomorphic after
connected sum with r copies of S2 X S2.

Remark: In [HaKrTe92] it is actually shown that r = 1 works, but we
don't need this to get our non-cancellation examples. We don't know whether
R1HI#CIHI admits a smooth structure. The only known obstruction, the Kirby-
Siebenmann obstruction vanishes, since it is non-trivial on both summands
and is additive under connected sum. If a smooth structure exists, then one
gets examples of stably diffeomorphic simple-homotopy equivalent smooth
4-manifolds that are not homeomorphic.

Proof: We begin with the construction of RIHI. According to Freedman
[Fr84], there exists a unique simply connected topological 4-manifold with
intersection form isomorphic to E8, the unique negative definite form with
signature -8. We denote this manifold by M(E8). The Kirby-Siebenmann
obstruction of M(E8) is KS(M(E8)) = 1. This follows since the Kirby Sie-
benmann obstruction of a TopSpin-manifold (i.e. wl and w2 vanish) is equal
to 1/8Q(M) mod 2. Consider IR`'#M(E8). The quadratic intersection form
of this manifold is E8 ®z A, where A = Z[Z/2] equipped with the anti-
involution which here in the non-oriented case maps the nontrivial element
r in 7L/2 to -r. This form is stably (i.e. after adding a hyperbolic form)
isomorphic to a hyperbolic form. This follows for instance from the fact that
the map of Wall groups Lo(7L) -> Lo(7L[7L/2]) is trivial [Wa70]. By Freedman
[Fr84], one can decompose the manifold as the connected sum of some to-
pological manifold M' and # r(S2 x S2), if the quadratic intersection form
of a manifold M splits off a hyperbolic form of rank 2r. Applying this to
IRI14#M(E8)#r(S2 X S2) one can decompose this as the connected sum of
(r + 8) (S2 x S2) and some manifold which we will denote by RIHI. By con-
struction this manifold has fundamental group Z/2 and Euler characteristic
1. Thus the manifold is homotopy equivalent to TRIP`'. One can prove that this
manifold is unique up to homeomorphism but for our context we don't need
this and call any manifold constructed this way by the same name. Since
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KS(M(E8)) = 1 and the Kirby-Siebenmann obstruction is additive under
connected sum, KS(IR1HI) = 1.

Next we show that R1#CIID2 and IRIII#CIHI are stably homeomorphic. For
this we apply Theorem 2.3. Obviously, both manifolds have the same normal
1-type: [7L/2, x, oo], where x generates H1(7L/2; 7L/2). The geometric normal
1-type is the trivial fibration Id : BO -* BO. Thus the relevant bordism
group is the non-oriented topological bordism group 974 °r, which is isomorphic
to Z/2 ® Z/2 ® Z/2, detected by wi w4 and KS. This follows, since, if
KS = 0, the manifold is bordant to a smooth manifold ([Fr84], [FrQu90]) and
the smooth non-oriented bordism group is detected by wi and w4 [Th54]. By
construction, all these invariants agree for IRI #Cp2 and IRIHI#CIHI. Thus, by
Theorem 2.3, they are stably homeomorphic.

To finish, we have to show that they are not homeomorphic. This will fol-
low from the construction and computation of an invariant which roughly
speaking is defined as follows. Let M be one of the manifolds we want to dis-
tinguish. H2(M; Z) = Z ® Z/2. Let c E H2(M; Z) be a class which reduces
to w2v(M) and which generates H2(M; Z)/Tors. Such a class is unique up
to sign. Now, represent c by a map to CPN for some large N. After making
this map transversal to CpN-1, the inverse image of CPN-1 is a surface E in
M (transversality holds in the topological category, see e.g. [FrQu90]) and
it inherits from M a so called normal Pin+-structure, which is unique up
to sign in the corresponding bordism group (for details see [HaKrTe92], §2).
Here Pin+ is the central extension

0-Z/2-4 Pin}(n) -30-*0
classified by w2 + wi . We obtain a fibration

p : BPin+ -- BO.
A normal Pin+-structure is a lift of the normal Gauss map to Pin+. Accord-
ing to Brown [Br72], a Pin+-structure on a surface E determines a quadratic
refinement with values in Z/4 of the intersection form on H2(E; Z/2). The
Witt group of such forms is isomorphic to Z/8 and the corresponding element
represented by the quadratic refinement on E is denoted by ±arf (M) E Z/8.

This is our invariant and it is obviously a homeomorphism invariant. Note
that one can define the same sort of invariant on M#r(S2 X S2) after choosing
a cohomology class c reducing to w2. But, if r > 0, this invariant depends on
the choice of c (not only up to sign) and loses all its information (to indicate
the dependence on c we denote the invariant by arf (M, c)). But it turns out
that it takes different values for I #CP2 and II8H#CH.

The reason for this is the following. The class c is the sum cl+c2 corresponding
to the connected sum decomposition of our manifolds. The arf-invariant is
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additive under connected sum. For oriented manifolds, one has the following
formula ([KiTa89], Cor.9.3):

2. arf (M, c) = c o c - Q(M) + 8. KS(M)mod 16,

where a(M) is the signature of M. Thus, arf (Cp2, c2) = 0 and arf (CIEII) = 4
(mod )8. By construction of IIIIEII we see that (RH, cl)#(4(S2 x S2)'0) =
(RI(, cl)#(E8i 0). Thus, from the formula above, ±arf (IRP4, cl) =
±arf (IRH,c1). 0

6 Application of Cancellation to Exotic Struc-
tures on 4-Manifolds

In this section, we study the existence of exotic structures on many algebraic
surfaces with finite fundamental group. From the point of view of cancella-
tion problems for 4-manifolds the construction of exotic structures on oriented
closed 4-manifolds is equivalent to the construction of homeomorphic smooth
manifolds which are stably diffeomorphic but not diffeomorphic. The reason
for this is that homeomorphic oriented smooth closed 4-manifolds are auto-
matically stably diffeomorphic, a result that can rather easily be derived from
Theorem 2.3 by comparing the topological and the smooth bordism group of
the corresponding normal 1-type ([Kr841], for another proof see [Go84]). To
distinguish stably diffeomorphic smooth oriented closed 4-manifolds, one has
to find rather delicate invariants. These are provided by the Donaldson poly-
nomials [Do90], which are defined for closed oriented smooth 4-manifolds
with some additional restrictions. For instance, these restrictions are fulfilled
for all 1-connected algebraic surfaces. We will base our examples of exotic
structures on the following result of Donaldson.

Theorem 6.1 ([Do90]) Let X be a 1-connected compact algebraic surface
without singularities. Then X is not diffeomorphic to a connected sum M1#M2
unless M1 or M2 have negative definite intersection form.

To apply this theorem to the construction of exotic structures on closed 4-
manifolds, it is sufficient to find an algebraic surface with finite fundamental
group X and a smooth 4-manifold M, such that X and M are homeomorphic
but the universal covering M is diffeomorphic to a connected sum M1#M2
where M1 and M2 do not have negative definite intersection form.

The following result is an application of this method showing the existence
of an exotic structure on surfaces where the sum of the signature o and the
Euler characteristic e is sufficiently large.



6. Application of Cancellation to Exotic Structures on 4-Manifolds 303

Theorem 6.2 ([HaKr90]) Let it be a finite group. Then there is a constant
c(7r) such that a compact non-singular algebraic surface X with iri (X) = it
and o(X) + e(X) > c(7r) has at least two smooth structures.

Note that by a construction of Shafarevic ([Sh74, p. 402 ff1) for each finite
group it there are algebraic surfaces with fundamental group it and arbitrarily
large Q(X) + e(X) (compare, [HaKr90, p. 109] and the following remark).

Remark: In [HaKr90], we used instead of Q(X) + e(X) > c(r) the condition
ci(X) > 0 and e(X) sufficiently large. We thank Stefan Bauer for pointing
out that our proof works under this slightly better condition.

Proof: The first ingredient in the proof is the following Proposition. We
say that two closed topological 4-manifolds Mo and Ml are weakly stably
homeomorphic if there exists a natural number r and and integers so and sl
such that Mo#r(S2 X S2)#soK is homeomorphic to Ml#r(S2 x S2)#s1K.
Here K is the Kummer surface (K3-surface), the quartic in CP 3, and for s
negative we mean by sK the connected sum of -s copies of K with its negative
orientation. Recall that K is a 1-connected 4-manifold with signature -16
and Euler characteristic 24.

Proposition 6.3 Let it be a finite group. Then the set of weakly stable ho-
meomorphism classes of closed smooth oriented !-manifolds with fundamental
group it is finite.

With this proposition we proceed as follows. For each weakly stable ho-
meomorphism class a, choose a representative Ma with e(Ma) minimal and
-8 < a(Ma) < 8 and suppose Ma ^_' M«#S2 x S2, if it is trivial. Then, for
each closed oriented smooth 4-manifold X with fundamental group isomor-
phic to it, there exist a and s such that X is stably homeomorphic to Ma#8K.
If e(X) > e(Ma#sK), then Theorem 3.1 implies that X is homeomorphic
to Y = Ma#r(S2 x S2)#sK for some r > 0. Now, Donaldson's Theorem
6.1 implies that, if X is an algebraic surface, then X and Y are not diffeo-
morphic, since k is again a compact algebraic surface and for it non-trivial
Y = Y'#S2 X S2 decomposes as the connected sum of two smooth manifolds
with indefinite intersection forms, and for it trivial we assumed that the same
holds for Y. Now the proof of Theorem 6.2 is finished if we can find a number
c(7r) such that e(X) > e(Ma#sK) for any algebraic surface X with funda-
mental group it and o(X) + e(X) > c(ir). It is actually enough to do this
for minimal surfaces X since the condition v(X) + e(X) _> c(7r) is invariant
under blow ups and also X#k i TE'2 and Y#k Q:P2 remain non-diffeomorphic
by Donaldson's Theorem.
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To compare for a minimal surface X, e(X) with e(Ma#s K), we express
e(Ma#s K) in terms of e(M0), o(Ma) and a(X):

e(Ma#s K) = e(Ma) + 22. ( s

and
a(X) = a(Ma#s K) = a(Ma) - 16s.

This implies

e(M,,#s K) = e(Ma) + (11/8) 1 a(X) - a(Ma) .

We have the following inequality for algebraic surfaces:

e(X) - (11/8) 1 o(X) I> (1/12)e(X).

If a(X) < 0, this is an immediate consequence of the signature theorem
(a(X) _ c (X) 32e(X)) and the fact that a minimal surface has c > 0. If
a(X) > 0, the signature theorem implies

e(X) - (11/8) 1 a(X) (> (1/12)e(X) + (11/24)(4e(X) - ci(X)).

Thus we are finished for surfaces fulfilling (4e - c) > 0. For surfaces of gen-
eral type, this is a consequence of the inequality of Miyaoka-Yau ([BaPeVa84],
p. 212). The only minimal surfaces with finite fundamental group and
a(X) > 0 are diffeomorphic to CP2, S2 X S2 or CP2#CP2 (this follows
from the Enriques-Kodaira classification ([BaPeVa841, p. 187ff)), for which
the inequality holds.

Using this inequality together with the formula for e(Ma#s K) above (note
that a(X) = a(Ma) mod 16 and - 8 < o(Ma) < 8) we get:

e(X) - e(Ma#s K) = e(X) - (11/8) I a(X) I -e(MQ) ± (11/8)a(Ma)
> (1/12)e(X) - e(MQ) - 11.

Since 2e(X) > a(X) + e(X), we see that if a(X) + e(X) > 24(e(Ma) + 11)
we have e(X) > e(Ma#s K).

As there are only finitely many Ma's, we can define

c(ir) := 24 max{e(Ma) + 11},

finishing the proof of our theorem.

Proof: (of Proposition 6.3) The proof is an application of Theorem 2.3. First,
we note that for a fixed algebraic normal 1-type [ir, w1, w21, the bordism group
114(BTnp[irw1iW2]) ®Q is isomorphic to Q, the isomorphism is given by the
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signature. This is an easy consequence of the Atiyah-Hirzebruch spectral
sequence. K is a 1-connected spin-manifold and thus the connected sum with
K does not change the algebraic normal 1-type. Since a(K) = -16, the set
of weakly stable homeomorphism classes of manifolds with fixed algebraic
normal 1-types is finite. But, if we fixir, the set of algebraic normal 1-types
is finite since H1 (r; 7G/2) and H2(7r; Z/2) are finite.

This result and stronger results for special fundamental groups led us to the
following conjecture.

Conjecture: A compact non-singular algebraic surface with finite fundamen-
tal group has at least two smooth structures.

We note that a minimal surface with finite fundamental group has c1 > 0
(this follows from the classification, e.g. [BaPeVa84], p. 188). But if > 0
and a(X) + e(X) < c(ir), the Euler characteristic can only take finitely many
values. On the other hand, there are only finitely many homeomorphism
types of closed oriented 4-manifolds with prescribed finite fundamental group
it and fixed Euler characteristic ([HaKr88], Corollary 1.5). Thus we obtain:

Corollary 6.4 Let it be a finite group. Then the conjecture holds for all
but perhaps a finite number of homeomorphism types of minimal algebraic
surfaces X with fundamental group it.

Based on similar arguments as above and some more delicate computations
of Donaldson invariants one gets the following result, which we state without
proof.

Theorem 6.5 ([HaKr923]) (i) The conjecture holds for all algebraic surfaces
with finite non-trivial cyclic fundamental group.

(ii) The conjecture holds for all elliptic surfaces X with finite fundamental
group except perhaps if X has geometric genus 0, where the statement holds
after blowing up once replacing X by X#, CP2

7 Topological Embeddings of 2-Spheres into
1-Connected 4-Manifolds and Pseudo-free
Group Actions

We finish this paper with two further applications of cancellation to 4-dimensional
topology. The first is again a link between 2- and 4-dimensional topology and
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concerns the existence and uniqueness of locally flat simple embeddings of
2-spheres in a 1-connected 4-manifold N. These problems were substantially
settled in [LeWi90] for homology classes of odd divisibility. Let x E H2(N; Z).
Then x = dy with y primitive and d is called the divisibility of x. Such em-
beddings are called simple if the fundamental group of the complement is
abelian (and hence isomorphic to G = Z/d). Denote y y by m, and let
b2(N) and v(N) denote the rank and signature of the intersection form on
H2(N; Z). A homology class x is called characteristic, if its reduction mod 2
is dual to w2.

Theorem 7.1 ([HaKr922]) Let Nbe a closed 1-connected topological 4-mani-
fold.

i) Let x E H2(N; Z) be a homology class of divisibility d # 0. Then x can be
represented by a simple locally flat embedded 2-sphere in N if and only if

KS(N) = (1/8)(Q(N) - x x) mod 2

when x is a characteristic class, and if

b2(N) ? m ja<xd Ia(N) - 2j(d - j)(1/d2)x xj.

ii) Any two locally flat simple embeddings of S2 in N representing the homol-
ogy class x are ambiently isotopic if b2(N) > 1 o (N) l + 2 and

b2(N) > max jo (N) - 2j(d - j)(1/d2)x x1.
O<j<d

The proof will be based on the original idea of V. Rochlin (as in [LeWi90]).
The embedding problem will be studied via an associated semi-free cyclic
group action which is the same as a branched covering: if f : S2 -* N is
an embedding representing a homology class of divisibility d, then there is a
d-fold branched cyclic covering (M, G) over N, branched along f (S2).

This correspondence connects the embedding problem with the second topic
of this section. It is the classification of actions of finite cyclic groups on 1-
connected 4-manifolds, where we assume that the group action has a singular
set consisting of isolated points. We also assume that the singular set of
the action is non-empty: free actions, or equivalently 4-manifolds with finite
cyclic fundamental group, were classified in Theorem 3.8. For earlier work
in this direction compare [EdEw90], [Wi90]. The following result is a slight
generalization of ([HaKr9221, Corollary 4.1).

Theorem 7.2 (compare [HaKr922], Corollary 4.1) Let M be a closed, ori-
ented, simply-connected topological 4-manifold. Let G be a finite cyclic group
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acting locally linearly on M, preserving the orientation, with non-empty
finite singular set. Let MO denote the complement of a set of disjoint open
G-invariant 4-disks around the singular set, and assume that X = Mo/G =
W#(S2 X S2), where aW = 9(Mo/G). Then the action (M, G) is classified
up to equivariant homeomorphism by the w2-type, the local singular data, the
signature and Euler characteristic of M and the Kirby-Siebenmann invariant
of Mo/G.

The "w2-type" is I, II or III, if w2(M) # 0, if W2 (X) = 0 or if w2(M) = 0 and
w2(X) # 0 resp. The "local singular data" is the equivalence class of pairs
consisting of the tangential G-representations at the singular set together
with, when M is spin and IGJ is even, a preferred set of spin structures on
the lens spaces bounding X = Mo/G. To describe this preferred set note that
the w2-type determines the normal 1-type of X. If M is spin and IGI is even,
then a normal 1-smoothing on X determines a spin-structure on v(X) - L,
where L is a complex line bundle with w2(L) = w2(X) and both possible
spin-structures occur. Now, consider the boundary components O X. If the
map from H2(X; Z/2) to H2(a;X; Z/2) is non-trivial for some i then it is an
isomorphism and, since O,X is spin, X is spin. In this case we choose L the
trivial bundle and the preferred set of spin structures is the restriction of any
spin structure on X to aX. If the map from H2(X; Z/2) to H2(a;X; Z/2) is
trivial for all i, then the restriction of L to a;X is stably trivial for all i and
a normal 1-structure on X determines a spin structure on aX. Any of these
gives the preferred set in this second case.

We also remark that KS(MoIG) = KS(Mo) = KS(M) when G has odd
order, since connected sum with the Chern manifold changes the Z/2-valued
Kirby-Siebenmann invariant.

The proof of both theorems is similar in spirit but the proof of Theorem
7.1 is rather lengthy. We will prove Theorem 7.2 in detail and only give a
sketch for Theorem 7.1 and refer to [HaKr922] for the details. Let G act
on M with fixed point set either a 2-sphere and semi-free action (Theorem
7.1, ii)) or with finite singular set with prescribed fixed point data (Theorem
7.2). Then we denote by MO the complement of an open equivariant tubular
neighborhood around the fixed point set resp. singular set. Given another
action choose a homeomorphism between the boundaries of X = Mo/G. We
have to show that the homeomorphism type of Mo/G rel. boundary is deter-
mined by the data. For this one first proves that the homeomorphism extends
stably. This is an application of a relative version of Theorem 2.3. This rel-
ative version says that a homeomorphism between two compact topological
4-manifolds MO and M1 with the same algebraic normal 1-type [9r, w1, w2]
extends to a stable homeomorphism, if and only if they have the same Euler
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characteristic and if they admit normal 1-smoothings vo and v1 resp., which
are compatible with the homeomorphism between the boundaries and such
that the union of (M0, vo) and (M1i v1) via the homeomorphism along the
boundaries represent zero in 124(BT°P[7r,w1iw2]) ([Kr85], Theorem 2.1). By
assumption there exist compatible normal 1-smoothings. In our situation,
the Atiyah-Hirzebruch spectral sequence implies that this bordism group is
determined by the signature and Kirby-Siebenmann obstruction. Then one
uses a relative version of Theorem 3.1 to cancel ([HaKr922], Corollary 3.6).
For this one has to show that one can split off S2 X S2 from MOIG, something
which is assumed in Theorem 7.2, and which follows from the inequalities in
Theorem 7.1, ii) and the existence result in Theorem 19 i). This finishes the
proof of Theorem 7.2. For Theorem 7.1, ii) one has to show that the resulting
homeomorphism of N mapping the two embedded 2-spheres into each other
is isotopic to Id. For this one carries the program above out with more care
to control the induced map on homology which has to be the identity. Then
one applies a Theorem from [Kr79] which says that a self-homeomorphism
on a 1-connected 4-manifold inducing Id on homology is pseudo-isotopic to
the identity. By a theorem of Perron [Pe86], this implies the existence of an
isotopy.

To prove Theorem 7.1 i) one uses again a stabilization argument. The point
will be to construct an embedding of S2 into N' = N # r(S2 x S2) for some r
representing x + 0. Now, consider the ramified covering M' over N', ramified
over the embedded 2-sphere. One has to carry out the construction of N'
and the embedding in such a way that H2(M'; Z), considered as module over
7L[G] with equivariant intersection form splits off a hyperbolic summand of
rank r, such that the fixed point set under the G-action on this orthogonal
complement is isomorphic to H2(N;7G) and the homology class represented
by the embedded 2-sphere is x. This will follow from some purely algebraic
arguments. Then it is not difficult to cancel the hyperbolic summand geo-
metrically using Freedman's techniques, to realize the homology class x by
an embedded 2-sphere in the original manifold N.



Chapter X

J. H. C. Whitehead's
Asphericity Question

William A. Bogley

1 Introduction

This article is concerned with a question posed by Whitehead in 1941 [Wh411]:

"Is any subcomplex of an aspherical, 2-dimensional complex itself
aspherical?"

By a 2-dimensional complex is meant a CW complex in which each cell has
dimension less than three; in short, a 2-complex. By definition, a connected
complex X is aspherical if its universal covering complex X is contractible.
For a connected 2-complex X, this is equivalent to ir2(X) = 0 by use of
Whitehead's Theorem (11.2.12) for X.

This question remains unanswered despite considerable expense of effort; a
wide variety of results is scattered throughout the literature. The present in-
tent is to survey these efforts and to present both a summary of the published
results and an overview of the methods that have been used in the study of
the problem.

The context of Whitehead's question is discussed in Section 2. In Section
3, hypotheses on the cellular structure of a subcomplex of an aspherical 2-
complex are considered under which that subcomplex must be aspherical.
Section 4 begins with a result of Howie [Ho832] that essentially bifurcates the
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study of Whitehead's question into a `finite case' and an `infinite case'. Each
of these cases leads to open questions in combinatorial group theory. The fi-
nite case affirms a relation between Whitehead's question and the asphericity
of knot complements, and includes a connection to the Andrews-Curtis con-
jecture. (See Chapters I and XII of this volume.) The discussion in Sections
5-7 is algebraic, in fact group theoretic; the work treated in these sections
relates the asphericity of K to the subgroup structure of ker(7r1K -+ ir1L),
where K is a connected subcomplex of an aspherical 2-complex L. Aspheric-
ity of K is related to homological properties of 7r1 K in Section 8 via a theorem
of Kaplansky [Ka72, Mo69]. Topological considerations are revisited in Sec-
tion 9, where null-homotopies of spherical maps are considered directly by
means of framed links. Throughout the article, the advantage of hindsight is
freely employed. Little heed is paid to chronology and some results have been
somewhat paraphrased. The author is solely responsible for any omissions or
misrepresentations. The concluding Section 10 contains questions for future
work, and is co-authored with J. Howie.

2 The Context of Whitehead's Question

Whitehead's work in [Wh411] concerns the relation between 7r,,X and 7r,,Y
where Y is obtained from the path connected space X by attaching n-cells
(n > 2). Among the results one finds an exact sequence

7r,,X -+ 7r, Y --f R,, -+ 7r,,-,X,

where R. is an explicitly given group upon which 7r1X acts on the left [Wh411,
Theorems 3 and 4]. Subsequent papers [Wh46, Wh492] reveal Rn as the
relative homotopy group 7rn (Y, X) and the above as a portion of the long
exact homotopy sequence for the pair (Y, X). When n > 3, R is a free
7G7r1X-module with basis in one-to-one correspondence with the n-cells of
Y - X. (Still with n > 3, Whitehead also gives an explicit description of
Z7r1X-module generators for ker(7r,,X --* 7rnY) [Wh411, Lemma 4] involving
a certain product

7r,,,_1X ® 7r2X -4 7rnX

[Wh411, pages 411-413].)

The situation is radically different when n = 2, principally because 7r2 (Y, X) is
non-abelian, in general. In [Wh411] the group R2 (there denoted hr) is defined
in terms of generators and relations. The isomorphism R2 = 7r2(Y, X) is
recognized in [Wh46]. In [Wh492] the terminology is applied that 7r2 (y, X) -+
7r1X is a free crossed 7r1X-module when Y is obtained from X by attaching
2-cells. (See Chapters II and IV of this volume). Subsequent expositions
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of this result appear in [Br80, Co51, Fe83, Ra80, Si80]. See [Br84, BrHi78,
BrHu82, Dy871, Pe49, GuRa8l] for applications and further developments.

The description of relative ire in terms of generators and relators prompted
Whitehead to pose his question, as it is thus seen to reduce to a problem in
algebra. For suppose that an aspherical 2-complex L is a union of subcom-
plexes K and K' where K fl K' is the 1-skeleton LM. Comparing the exact
homotopy sequence of (K, L(')) with that of (L, LM), it is easy to see that K
is aspherical ** ir2K = 0 q ir2(K, L(1)) -- ir2(L, L(1)) is injective. The point
is that Whitehead's description of relative 1r2 shows that 7r2(L, L(')) is an
explicitly given quotient of the free product ir2(K, L(1)) * 7r2(K', L(1)), where
each of the factors is explicitly given in terms of generators and relators. The
question of whether ir2(K, Li1)) -+ ir2(L, Li1i) is injective is therefore a (diffi-
cult) problem in combinatorial group theory; it has been treated algebraically
in [GiHi89, Gi92]. Further reformulations of Whitehead's question based on
the free crossed module structure appear in [Pa63, (14.1)] and [Si80, (4)].

Interest in Whitehead's question can be motivated by the fact that the com-
plement of any tame knot in the 3-sphere has the homotopy type of a 2-
complex that can be embedded in a finite contractible 2-complex. A posi-
tive solution to Whitehead's question therefore holds the promise of a new
proof of the asphericity of knot complements. A footnote included in the
midst of Whitehead's original question [Wh411i Footnote 30] suggests that
this prospect may have been uppermost in Whitehead's mind at the time.
See Section 4 for further discussion of this and related issues.

From a more general perspective, computation of the second homotopy group
of 2-complexes, including the asphericity of 2-complexes, is a difficult prob-
lem that lies at the heart of the general problem of computing the homotopy
groups of CW complexes. Using results from [Wh39], an effective algorithm
for computing all higher homotopy modules of CW complexes in terms of
generators and relations would be available if such existed for the nth homo-
topy module of n-complexes (n > 2). Whitehead's work on crossed modules
provides an abstract algebraic description of the second homotopy group of a
2-complex [Wh411, page 427]. Abelianizing, one obtains the homological de-
scription of 7r2 in terms of Reidemeister chains [Re34, Re50, Wh46]. (See also
Chapter II, Theorem 3.8, in this volume.) However, as Whitehead himself
observes [Wh411, page 409] [Wh492, page 495], neither of these descriptions
leads to effective general calculations of ir2. Nor do they shed any practi-
cal light on Whitehead's question on the heredity of asphericity. Work on
this question may therefore by viewed as fundamental to the further under-
standing of asphericity of 2-complexes and of the mechanisms that create the
algebraic structure of 7r2.



312 Bogley : X. WHITEHEAD'S ASPHERICITY QUESTION

Much of the work that has been done on Whitehead's question has a strong
group-theoretic flavor. Indeed, in the decades since it was posed, the question
has played direct or indirect roles in the development of several new themes
in group theory. The homological characterization of locally indicable groups
achieved in [HoSc83] is a logical continuation of work of Adams [Ad55] on
Whitehead's question. (See Section 6 below.) The study of equations over
groups is certainly related to asphericity in some way (see e.g. Section 5);
however the exact nature of this relation is not fully understood.

3 Structural Results

Let K be a connected subeomplex of an aspherical 2-complex L. This section
discusses hypotheses on the cell structure of K which guarantee that K is as-
pherical. Of course, any 1-dimensional CW complex is aspherical. Cockcroft
[Co54] used Lyndon's Simple Identity Theorem [Ly50] to show that if K has
just a single 2-cell, then K is aspherical. This implies, for example, that if L
is an aspherical 2-complex with at most two 2-cells, then every subcomplex
of L is aspherical. Here we will use [Ho82] in place of the Simple Identity
Theorem to considerably extend Cockcroft's result.

A fundamental observation of Cockcroft [Co54] is that the Hurewicz homo-
morphism 7r2K -> H2K is trivial. This follows from the fact that the compos-
ite ir2K -* H2K -+ H2L factors through 7r2L = 0 and that H2K -3 H2L is
injective, as L is 2-dimensional. In other words, every spherical map S2 -+ K
is homologically trivial. 2-complexes with this latter property are therefore
said to be Cockcroft. The Cockcroft property has a notable consequence for
the attaching maps of 2-cells as seen below in 3.1 and 3.2.

An element g in a group G is a proper power in G if there exists an integer
n > 1 and an element a E G such that a* = g. Note that the identity element
is thus a proper power. A loop f : S1 -+ X in a path connected space X is a
proper power in X if, after connecting f to the basepoint of X by a path, the
resulting element of 7r1X is a proper power in 7r1X. This is well-defined since
varying choices of connecting path or basepoint vary the resulting elements
of 7r1X only up to conjugacy in 7r1X. Finally, if a 2-cell e is attached to
a space X, then e is attached by a proper power in X if an attaching map
S1 -+ X for e is a proper power in X. As an example, let Y be the 2-complex
modeled on (x, y, t : xyx-1y1, txytyx) and let X be the subcomplex modeled
on (x, y, t : xyx-1y 1). The 2-cell of Y - X is not attached by a proper power
in the 1-skeleton Y(l>, but it is attached by a proper power in X. This is
because xy = yx in 7r1X, and so txytyx = (txy)2 in 7r1X. The following two
lemmas are closely related to [Co54, pages 383-384], [Hu79, Proposition 1]
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and [Hu81, Proposition 5].

Lemma 3.1 If Y is a connected Cockcroft 2-complex with torsion free fun-
damental group and e is a 2-cell of Y, then e is not attached by a proper
power in Y - e.

Proof: Let F : B2 -* Y be a based version of a characteristic map for e,
obtained by connecting the basepoint of Y to a point in the boundary of e.
The restriction f = FIS, : S1 -4 Y - e is then a based version of an attaching
map for e. Just suppose that a E 7r1(Y - e) and that n is an integer such
that a" = [11 in 7rl (Y - e). First note that n # 0; for otherwise Y could be
3-deformed to (Y - e) V S2, which is not Cockcroft. It suffices to show that
n = ±1. The following commutative diagram has exact rows.

7r2Y

10
H2Y

4 ire (Y, Y - e) - 7r1(Y - e)

Ih

H2 (Y, Y - e)

2* 7r1Y

Since i([fl) = 1 and 7r1Y is torsion-free, it follows that i(a) = 1. Thus there
exists an element A E ir2(Y,Y - e) such that 0(A) = a. Now, 0([F]A-") =
[f]a-" = 1, so [F]A-" E imj. On the other hand, Y is Cockcroft (i.e.,
ir2Y + H2Y), and so h([F}A-") = h([F}) - nh(A) = 0. Since H2(Y,Y - e)
is infinite cyclic, generated by h([F]), it follows that n = ±1.

Lemma 3.2 If K is a connected subcomplex of an aspherical 2-complex L
and e is a 2-cell of K, then e is not attached by a proper power in K - e.

Proof: Since L is Cockcroft and has torsion-free fundamental group (indeed,
7r1L has cohomological dimension at most two), e is not attached by a proper
power in L - e by 3.1. It follows immediately that e is not attached by a
proper power in K - e.

Following [Ho82], a 2-complex X is reducible if for each finite subcomplex Y
of X, either Y C XM or else there exists a subcomplex Z of Y such that Y is
obtained from Z by attaching a single 1-cell e1, and at most a single 2-cell e2;
the 2-cell, if it exists, is required to strictly involve the 1-cell e1, in the sense
that its attaching map S' -+ Z U e1 is not freely homotopic in Z U el to a loop
in Z. A typical reducible 2-complex is built in the following way. Begin with
a 1-complex and attach a single new 1-cell and a single new 2-cell, where the
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attaching map for the new 2-cell strictly involves the new 1-cell. Repeat this
process as often as you like. The notion of reducible 2-complexes is a natural
generalization of staggered 2-complexes [Ge871, Ho87] and of staggered group
presentations [Ma30, Ly50]. Howie proves [Ho82, Corollary 5.4]:

If X is a reducible 2-complex such that for each 2-cell e of X, e is not attached
by a proper power in X - e, then X is aspherical.

Removing the proper powers hypothesis, no general computation of 1r2 is
known for reducible 2-complexes. Nevertheless, with 3.2 one has the following
result, which does not seem to have been observed in the literature.

Theorem 3.3 Connected reducible subcomplexes of aspherical 2-complexes
are aspherical.

This result includes the fact that a staggered subcomplex of an aspherical
2-complex is aspherical [Ly50, Hu81]. Finally, Cockcroft's result is a conse-
quence of 3.3.

Corollary 3.4 ([Co54]) If a connected subcomplex of an aspherical 2-complex
has just a single 2-cell, then that subcomplex is aspherical.

4 Reductions, Evidence and Test Cases

Suppose that K is a connected subcomplex of an aspherical 2-complex L.
As is well known, there is no loss of generality in the study of Whitehead's
question if one assumes either of the following:

L is obtained from K by attaching 2-cells, or

K is finite and L is contractible.

The first reduction is available because 9r2K = 0 q 7r2(K U LM) = 0. The
second reduction is available by compact supports, since the universal cov-
ering complex L is contractible. Unless otherwise stated, neither of these
assumptions will be in force in the sequel. A deeper reduction of the problem
appears in a theorem of Howie.

Theorem 4.1 ([Ho8321) If the answer to Whitehead's question is NO, then
there exists a connected 2-complex L such that either
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1. L is finite and contractible and L - e is not aspherical for some open
2-cell e of L, or

2. L is the union of an infinite ascending chain of finite connected non-
aspherical subcomplexes Ko C Kl C ... C Ki_1 C K; C ..., where each
inclusion K1_1 C K1 is nullhomotopic. 0

As Howie points out, a weaker form of this result, obtained by replacing the
word `contractible' in 4.1.1 by `aspherical,' is elementary. A proof of this
weaker form can be extracted from [Ho832] as follows. Given that the answer
to Whitehead's question is NO, assume first that there exists a finite aspher-
ical 2-complex Y with a connected non-aspherical subcomplex X. Suppose
that Y - X has 2-cells e1,. .. , en (n > 1), and let m be the minimum among
all i such that X U YM U e1 U ... U e; is aspherical. Then 1 < m < n, so
taking L = X U Y(l) U el U ... U em and e = em produces an example as in the
weaker form of 4.1.1. Assume next that the answer to Whitehead's question
is NO, but that connected subcomplexes of finite aspherical 2-complexes are
aspherical. Select an aspherical 2-complex Y with a connected non-aspherical
subcomplex X. Let p : Y - Y be the universal covering, and let X be a
connected component of p-1(X). Then X is not aspherical and so, by com-
pact supports, has a finite connected non-aspherical subcomplex K0. Since Y
is contractible, the inclusion Ko C Y is nullhomotopic, and so extends over
the cone CKo to a map CKo -* Y. Since CKO is finite, this extension has
its image in a finite connected subcomplex K1 of Y. The inclusion Ko C K1
is nullhomotopic and K1 is not aspherical by hypothesis. Repeat the argu-
ment with Ko replaced by K1 and iterate. This produces the desired chain
Ko C Kr ...; the result is completed by setting L = UZ K,.

The proof of Theorem 4.1 employs towers of 2-complexes, a technique that
Howie adapted from 3-manifold theory. For example, Papakyriakopoulos re-
lied on tower constructions for his proof of the Sphere Theorem and the con-
sequent asphericity of knot complements [Pa57]. Towers of 2-complexes have
proved useful in a variety of contexts. See [Ho79, Ho812, Ho82, Ho832, Ge83].
Their use in [Ho79] will be outlined in Section 7 below.

Each of the two cases in 4.1 can be reduced to a problem in combinatorial
group theory. The possibility of constructing an example as in the `infinite
case' 4.1.2 has been considered by Dyer [Dy911], and leads naturally to the
study of increasingly subtle versions of the Cockcroft property. Note that if
Ko C K1 C ... is a chain as in 4.1.2, then each inclusion Ki_1 C K; induces
the trivial map on ire. Following [BrDy8l], let X be a connected 2-complex
and let N < 7r1X. The 2-complex X is N-Cockcroft if the lifted Hurewicz map
7r2X -* H2XN is trivial, where XN -3 X is the covering corresponding to N.
Note that if X is N-Cockcroft and N' < 7r1X contains some 7r1X-conjugate of
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N, then X is N'-Cockcroft. Also, X is Cockcroft ,# X is ir1X-Cockcroft, while
X is aspherical t* X is { 1 }-Cockcroft. Suppose now that X is a subcomplex
of a connected 2-complex Y.

Lemma 4.2 The inclusion-induced map ir2X -- 7r2Y is trivial if and only
if X is ker i# -Cockcroft, where i# : ir1X -4 ir1Y is the inclusion-induced
homomorphism of fundamental groups.

Proof: Let p : Y -3 Y be the universal covering and let X be a connected
component of p -'(X); the restriction of p then determines the covering X ->
X corresponding to keri# < ir1X. Since ir2Y -i H2Y and H2X -+ H2Y are
both injective, it readily follows that ir2X 4 7r2Y q 7r2X 4 H2X. 0

Suppose that a connected 2-complex L is given as an ascending union Ko C
K1 C ... C U2 K, = Las in 4.1.2. Replacing each K1 by K1ULM, we have that
for each i > 1, K1 is obtained from K;_1 by attaching 2-cells, and the inclusion-
induced map 7r2Ki_1 -* 7r2K; is trivial. Lemma 4.2 reveals the main difficulty
in attempting to construct such an example: Having constructed Ki_1, one
must add 2-cells in such a way that the resulting adjunction space Ki has a
suitable Cockcroft property. Perhaps even more problematic is the fact that
one must be able to do this infinitely many times. The requirements are
detailed in the following theorem, which is a slight modification of a theorem
of Dyer [Dy911].

Theorem 4.3 If there exists an example as in 4.1.2, then there exists a finite
connected non-aspherical 2-complex K and an infinite ascending chain 11) =
No < N1 < N2 < ... < 7r1 K of normal subgroups of 7r1 K such that the
following three properties hold.

1. K is N1-Cockcroft.

2. For each i > 1 there is a subset ri C 7r1K such that

(a) {r2N2_1 : ri E ri} normally generates Ni/Ni_1 in 7r1K/Ni_1, and

(b) {r2Ni_1[Ni+1, Ni_1] : ri E ri} is a free basis for the Z(7r1K/Ni+1)-
module

Z Ozlvi+, H1(Ni/Ni-1) = Ni/(N2-1[Ni, N2+1]).

3. For each i > 1 the natural map H2(Ni+1/N2_1) -* H2(Ni+1/Ni) is in-
jective.
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Furthermore, if such a 2-complex K exists, then the answer to Whitehead's
question is NO.

Given K, Ni and r; as in 4.3, set K = K0 and for each i > 1 let K, be obtained
from Kf_1 by attaching 2-cells along based loops representing the elements
r, E r,. One then has exact sequences

1-+N,/N,_1-+ir1K/N,_1 -*ir1K/N, -+1

where 7r1K, 7r1K/N1. In particular, N1+1/Ni < 7r1K/N, and H1(Ni/Ni_1)
N,/(Ni_1[Ni, Ni]) has ir1K/Ni-action induced by conjugation in ir1K/Ni_1 (or
rather in ir1K). Killing the action of Ni+1, the group N1/(N1_1[N1iN1+1])
becomes a 7G(ir1K/N,+1)-module with the elements listed in 2(b) as module
generators. The condition 1 gives that 7r2Ko 3° ir2K1 by 4.2. In addition,
K0 is N2-Cockcroft. Given that Ki_1 is Ni+1/N1_1-Cockcroft, the conditions
2 and 3 together provide necessary and sufficient conditions for K1 to be
Ni+1/N;-Cockcroft. By 4.2 and compact supports, the 2-complex L = Ui K,
is aspherical.

Consider next the `finite case' in 4.1.1. Work in this area has led to the study
of knots and ribbons, and of groups of the form F/[R, S] where R, S are
normal subgroups of a finitely generated free group F. The latter considera-
tions arise as follows. A normal factorization of a group G is an expression
G = R1 ... Rn of G as a product of a finite number of normal subgroups of
G. A normal factorization F = R1 ... Rn of a finitely generated free group F
is efficient if for i = 1, ... , n there exist normal generating sets ri for Ri in F
such that iri l +... + fir, = rankF.

If A and B are subgroups of a group G, then [A, B] denotes the subgroup of
G generated by all commutators [a, b] = aba-lb-1 (a E A, b E B). If A and B
are normal in G, then so is [A, B], and [A, B] C A fl B. The nth term of the
lower central series of G is denoted Gn, and is defined inductively by G1 = G
and Gn+1 = [G, Gn].

Lemma 4.4 [Bo91]) The following two statements are logically equivalent.

1. Connected subcomplexes of finite contractible 2-complexes are aspheri-
cal.

2. If R and S are distinct factors from an efficientficient normal factorization
of a finitely generated free group, then R n S C [R, S].
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Proof: 2 1: Let K be a connected subcomplex of a finite contractible
2-complex L. It suffices to show that ir2K = 0. Replacing K by K U LM, one
may assume that L is obtained from K by attaching 2-cells. If K has just a
single 2-cell, then K is aspherical by 3.4. Suppose then that K is a union of
subcomplexes K = Kr U K, where each of Kr, K3 has at least one 2-cell and
Krfl Ks = 0). Now, L = KUKt where Kt is obtained from LG) by attaching
the 2-cells of L - K. Let F = ir1Lfli, a finitely generated free group, and let
R (resp. S, T) denote the kernel of the homomorphism of fundamental groups
induced by the inclusion of LM in K, (resp. Ks, Kt). Then F = RST since
.7r1L is trivial; this normal factorization of F is efficient because H2L = 0. As
normal generators of R (resp. S, T), take the based homotopy classes of the
attaching maps for the 2-cells of Kr (resp. Ks, Kt). By induction, each of
Kr, Ks is aspherical, and by [GuRa8l, Theorem 1], ir2K '= (R fl S)/[R, S].
The conclusion 1 follows immediately from 2.

1 = 2: Suppose that R and S are distinct factors from an efficient normal
factorization of a finitely generated free group F. Upon multiplication of the
complementary factors there is a an efficient normal factorization F = RST
of F. There are sets r, s, t of normal generators for R, S, T in F such that
Irl + Is) + Itl = rankF. Let X be a one-point union of circles, with one
circle for each element of a basis of F; thus ir1X = F. Let K be the 2-
complex obtained by attaching 2-cells to X along based loops representing
the elements of r U s, and let L be obtained from K by further attaching 2-
cells along based loops representing the elements of t. Then L is contractible
since F = RST is efficient. The hypothesis 1 implies that K is aspherical.
By [GuRa8l, Theorem 1], there is an epimorphism ir2K -+ (R fl S)/[R, S],
and so R fl S = [R, S]. 0

Suppose that F = RST is an efficient normal factorization of a finitely gen-
erated free group F, where R # S, and let Q = F/[R, S]. Using [GuRa8l,
Theorem 1], it is not difficult to show that R fl S = [R, ST] fl [S, RT] C F2
[Bo91, Lemma 7], and so there is a natural homomorphism (R fl S)/[R, S] -*
Q2/Q3 = F2/[R, S]F3 which is induced by the inclusion of Rfl S into F2. Com-
pare [BoGu92, Section 6]-for other choices of R, S 4 F, this homomorphism
is often nontrivial. In the present situation however, it turns out that Rfl s c
[R, S]F3, and so this homomorphism is trivial. As such, there is an inclusion-
induced homomorphism (R fl S)/[R, S] -+ Q3/Q4 = [R, S]F3/[R, S]F4. One
might hope to be able to use such a homomorphism to eventually detect an
element of (Rfl S)/[R, S] for suitably chosen R, S, F, and thus give a negative
answer to Whitehead's question. The following result dashes such hopes.
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Theorem 4.5 ([Bo91]) If R and S are distinct factors from an efficient nor-
mal factorization of a finitely generated free group F, then

RnSc n[R,S]Fn.
n>1

It follows that the quotient (RnS)/[R, S] embeds naturally in Q,= nn>1 Q,,.
The proof of 4.5 essentially amounts to a determination of the structure of the
Lie algebra that is built out of the lower central series of Q [Bo91, Theorem
2]. In particular it is shown that is finitely generated and free
abelian for all n > 1. It follows from a result attributed to Hall-Jennings
in [Gu87, p. 75] that Q = Q n (IQ)" for all n > 1, where IQ denotes the
augmentation ideal in the integral group ring ZQ. Little seems to be known
about Q4, however. A group G is residually nilpotent if G, = 1. We remark
that residual nilpotence of groups of the form F/[R, R] has been studied
extensively. See [Gu87, Chapter 11.41 and the references cited there.

There are many test cases to consider in the setting of 4.1.1. The model of
any finite balanced presentation for the trivial group is a finite contractible
2-complex. (Conversely, any finite contractible 2-complex can be 3-deformed
to such a model.) The Andrews-Curtis conjecture predicts that any finite
contractible 2-complex can be 3-deformed to a point. (See Chapters I and
XII in this volume.) For the Whitehead question, one is interested to know
whether an aspherical subcomplex results upon deletion of a single 2-cell from
a finite contractible 2-complex L. This is unknown even if one assumes that L
can be 3-deformed to a point. Indeed, a large and concrete family of test cases
for the Whitehead question arises in this setting. For if e is an open 2-cell of
L, an analysis given in [Ho832] details the effect on L - e of a 3-deformation
of L.

Let r be a graph with vertices VF and (geometric) edges EF. Assume that
each edge of r is oriented and is labeled by a vertex of F. (Thus r is a labeled
oriented graph.) Associated to r is a group presentation

P(F) = (VF : i(e)A(e)t(e)-1A(e)-1(e E EF)).

Here, i(e), A(e) and t(e) denote the initial vertex, label and terminal vertex
of the edge e E EF, respectively. Let K(F) denote the 2-complex modeled
on P(r). If r is a finite tree, then upon adding a single relation of the form
v = 1, (v E vr), there results a finite balanced presentation of the trivial
group whose model contains K(F) as a subcomplex, and which can be 3-
deformed to a point (exercise).



320 Bogley : X. WHITEHEAD'S ASPHERICITY QUESTION

Theorem 4.6 ([Ho832]) If a finite 2-complex L can be 3-deformed to a point
and e is an open 2-cell of L, then there exists a finite labeled oriented tree r
such that L - e can be 3-deformed to K(r). 0

In particular, if the Andrews-Curtis conjecture is true (i.e., if each finite
contractible 2-complex can be 3-deformed to a point), then the complexes
K(I') constitute all test cases for the Whitehead question in the finite case
4.1.1.

The 2-complexes K(i') carry a large body of evidence to support the hypoth-
esis that the answer to Whitehead's question might be YES. For if k is any
tame knot in the 3-sphere S3, then there is a finite labeled oriented tree r
such that K([') embeds in the complement S3 - k as a spine. (That is, K(t)
is a strong deformation retract of S3 - k.) Indeed, a suitable r arises via a
Wirtinger presentation taken from a planar projection of k which contains
only double points. (See e.g. [BuZi85].) Thus, for all r that arise in this way,
K(F) is aspherical, since simplicial knot complements are aspherical [Pa57].
The bewildering variety of knots therefore provides that many of the K(F)
are aspherical. However, not all of the K(r) arise as spines of knot comple-
ments [Ho85, Ro91] and it is not known at present exactly which of the K(F)
do arise in this way. On the other hand, each K(F) does appear as a spine
of a certain four manifold, namely a ribbon disc complement, which is the
complement in the four-ball of a properly embedded 2-disc. Of course, it is
unknown at present whether all ribbon disc complements are aspherical. See
[Ho832] for a discussion (including a survey of some errors that have appeared
in the literature) and [Ho85] for partial results.

5 On the 7r1-Kernel

Let K be a connected subcomplex of an aspherical 2-complex L, and let G
be the kernel of the inclusion-induced homomorphism ir1K -4 ir1L of funda-
mental groups. Sections 5-7 concentrate on group-theoretic hypotheses on G
under which K is guaranteed to be aspherical.

Let p : L -> L be the universal cover and let k be a connected component
of P `(K). The restriction of p to K is a regular covering of K; indeed,
p#(ir1K) = G 4 7r1K. Attention is focused on G by the following lemma,
which was first observed by Cockcroft [Co54, page 376].

Lemma 5.1 If G = ker(ir1K -4 ir1L) is the trivial group, then K is aspher-
ical.
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Proof: When 7r1K -+ 7r1L is injective, k -4 K is the universal cover of K.
Thus, 7r2K=H2K<H2L-7r2L=0.
This leads to a consideration the following problem:

If X is a connected subcomplex of a connected 2-complex Y, under what cir-
cumstances does the inclusion of X into Y induce a monomorphism of fun-
damental groups?

This in turn is equivalent to the study of equations over groups, a longstanding
problem in combinatorial group theory with roots in work of B. H. Neumann
[Ne43]. There is a rich literature on this problem. See for example [BrS80,
EdHo9l, Ge83, Ge871, GeRo62, Ho812, Ho831, K192, Kr85, Ne43, Rot76,
Sh81]. For an algebraic formulation of this problem, consult [LySc77, page
49] or [Ho812]. The cited topological interpretation appears in [Ho812]. The
following result is due to Gerstenhaber and Rothaus [GeRo62, Rot76].

If X is a connected subcomplex of a connected 2-complex Y, H2(Y,X) = 0
and 7r1X is locally residually finite, then the inclusion-induced homomorphism
7r1X -+ 7r1Y is injective.

A group H is locally residually finite if for each finitely generated subgroup
F of H and for each nontrivial element 1 # f E F, there exists a normal
subgroup N of F such that N has finite index in F and f ¢ N. The proof
of the Gerstenhaber-Rothaus theorem appeals to the homotopy theory of
maps between Lie groups, first showing that the conclusion holds whenever
H2(Y,X) = 0 and 7r1X is a subgroup of a compact Lie group, and to the
representation theory of finite groups. The result was applied to Whitehead's
question by Beckmann in his thesis. A group is locally finite if each of its
finitely generated subgroups is finite.

Theorem 5.2 ([Be801j) Let K be a connected subcomplex of an aspherical
2-complex L. If G = ker(7r1K -+ 7r1L) is locally finite, then G is trivial, and
so K is aspherical.

Proof: The restricted covering K - K has 7r1 K - G. Since L is contractible,
the homology sequence for the pair (L, k) reveals that H1K - H2(L, K)
is free abelian. Since G is locally finite, H1 K is a torsion group, and so
H2(L, K) = 0. Since locally finite groups are locally residually finite, the
Gerstenhaber-Rothaus result implies that 7r1K - 7r1L is injective, and so
G = 1. Asphericity of K follows from 5.1.

Beckmann's result is a descendant of a theorem of Cockcroft [Co541, in which
it is assumed that 7r1 K is finite and that L is obtained from K by attaching
2-cells. The argument in 5.2 does not extend to the case where G is locally
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residually finite, since the abelianization of a locally residually finite group
need not be a torsion group. For example, free groups are locally residually
finite ([Ha49] [LySc77, page 195]).

6 Acyclic Coverings

Results on the ir1-kernel in the setting of Whitehead's question were first
given by Cockcroft [Co54]. These results were recovered and generalized by
Adams [Ad55] using very different methods. Adams's argument shows that
any connected subcomplex of an aspherical 2-complex must have an acyclic
regular covering complex. (A 2-complex X is acyclic if H1X = H2X = 0.)

Let G be a group and let A be an abelian group. The group G is conserva-
tive over A if whenever X -+ X is a regular covering of 2-complexes whose
group of covering automorphisms is isomorphic to G and H2(X; A) = 0, then
H2(X; A) = 0. The group G is conservative if it is conservative over all
abelian groups A. Moderately surprising is the fact [HoSc83, Theorems 1
and 2] that if G is conservative over Z, then G is conservative. The notion of
conservativity is due to Adams [Ad55], who established a number of closure
properties of the class of conservative groups, and proved the fundamental
fact that the infinite cyclic group is conservative. Homological and group-
theoretic characterizations of conservativity have since appeared, as in the
following theorem of Howie and Schneebeli [HoSc83].

The following are equivalent for a group G:

1. G is conservative;

2. If R is any commutative ring with 1 and 0 : M -* N is a homomorphism
of projective left RG-modules such that 10 : R ORG M -4 R ORG N
is injective, then 0 is injective;

3. Each nontrivial finitely generated subgroup of G has an infinite cyclic
homomorphic image.

The equivalence of conservativity with the homological condition 2 was (es-
sentially) observed by Adams [Ad55] (see also [HoSc83, Lemma 3.2]). Strebel
[St74] proved that 2 = 3. Groups satisfying 3 are said to be locally indicable;
this group-theoretic property was first considered by Higman [Hi40] in his
study of units and zero divisors in group rings. The implication 3 2 for
R = Z or Z P was proved independently by Gersten [Ge83] and by Howie and
Schneebeli [HoSc83]. The stated result appears in [HoSc83].
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Locally indicable groups have also been studied in connection with equations
over groups. See [BrS80, Ge83, Ho812, Kr85, Sh81]. Groups which are known
to be locally indicable (i.e., conservative) include free groups, torsion-free
nilpotent groups [St74], torsion free one-relator groups [BrS80, Ho82], knot
groups [Ho82], certain ribbon disc groups [Ho85] and also the fundamental
group of any reducible 2-complex X such that for each 2-cell e of X, e is not
attached by a proper power in X - e [Ho82].

The following universal coefficients lemma will be useful. An elementary proof
is to be found in [Ad55, page 487].

Lemma 6.1 For a 2-complex X, H2(X; Z/n7G) = 0 for all n E 7L if and only
if H2X = 0 and H1X is torsion free.

Following Adams [Ad55], define the conservative radical (or Adams radical)
of a group G to be

A(G) = n{N 4 G : G/N is conservative}.

This is a characteristic subgroup in the sense that if f : G -+ H is a group
homomorphism, then f (A(G)) C A(H). In particular, A(G) 4 G. Further,
as Adams points out, G/A(G) is conservative. These facts are not difficult to
verify using the equivalence of conservativity and local indicability. For ex-
ample, G/A(G) embeds in fI{G/N : N 4 G and GIN is conservative}; local
indicability is hereditary and is preserved under direct products of groups.
Finally, G is locally indicable if and only if A(G) = 1. The following state-
ment of Adams' theorem includes an observation due to Cohen [Co78, page
103].

Theorem 6.2 ([Ad55]) Let K be a connected subcomplex of an aspherical 2-
complex L and let G = ker(7r1 K -a 7r1 L) . Then, the regular covering complex
of K corresponding to A(G) 4 ir1K is acyclic.

Proof: Let p : L -+ L be the universal covering and let Ii be a connected
component of p-1(K). Let q : k -* K be the covering of k corresponding
to A(G) 4 G. (That is, q#(ir1K) = A(G).) Then, plfc o q : k -+ K is
the covering of K corresponding to A(G) < ir1K. This covering of K is
regular since A(G) is characteristic in the normal subgroup G of ir1K, and
so A(G) 4 ir1K. It suffices to show that H1K = H2K = 0.

As in the proof of 5.2, the homology sequence for (L, K) reveals that H2K = 0
and that H1K is free abelian. By 6.1, H2(K; Z/n7G) = 0 for all n E Z. Since
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the automorphism group G/A(G) of q is conservative, H2(K; Z/nZ) = 0
for all n E Z. In particular, H2K = 0. Further, by 6.1, one has that
H1K L- A(G)/[A(G),A(G)] is torsion-free. The exact sequence

1 -3 A(G)/[A(G), A(G)] -4 G/[A(G), A(G)] -a G/A(G) -a 1

now shows that G/[A(G), A(G)] is an extension of a locally indicable group
by a locally indicable group, and so is locally indicable. Thus it follows that
A(G) C [A(G), A(G)]. The other containment being trivial, one has that
H1K = A(G)/[A(G), A(G)] = 0. 0

For a connected 2-complex X, let ra(X) denote the set of all normal sub-
groups P of rr1X such that Xp is acyclic, where Xp -a X is the covering
corresponding to P. (Here, ra stands for `regular acyclic'.) Adams' theorem
6.2 says that if K is a connected subcomplex of an aspherical 2-complex L
and G = ker(ir1K -+ ir1L), then A(G) E ra(K) # 0. A group G is perfect if
H1G = 0 (i.e., G = [G, G]), and is superperfect if H1G = H2G = 0.

Theorem 6.3 Let X be a connected 2-complex.

1. X is aspherical . {1} E ra(X).

2. For P 4 ir1X, P E ra(X) q P is superperfect and X is P-Cockcroft.

3. [BrDy8l, HoSc831 If P E ra(X), then

(a) cd ir1X/P < 2 and

(b) ForallcEir1X and nEZ,c''EP=cEP.

4. If ra(X) # 0, then

(a) [Dy911] if A is a ring with trivial 7r1X -action and i = 1, 2, then
the cup product

H'(ir1X,A) ®H2(7r1X A) 4 H'+2(ir1X A)

is trivial, and

(b) [Mo90] all Massey products with codomain H3ir1X vanish.

Proof: The claim 1 is clear because a simply connected CW complex is
contractible if and only if it is acyclic. Let P 4 ir1X and let p : Xp -4 X
be the regular covering corresponding to P (i.e. p#(7r1Xp) = P). Then
H1P ^_' H1Xp and there is the Hopf sequence
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7r2XP-H2Xp-*H2P-0.

It follows that if P is superperfect and Xp is P-Cockcroft, then Xp is acyclic,
and conversely, proving 2. If Xp is acyclic, then the augmented cellular chain
complex C.(Xp) -+ Z -* 0 provides a free ZiriX/P-resolution of Z of length
two. This proves 3a; the conclusion 3b follows immediately from the fact that
groups of finite cohomological dimension are torsion-free. The proof of 4 is
omitted.

If X is aspherical, then cd irjX < 2, and so one way to show that X is
not aspherical is to display some non-vanishing (co)homology element in a
dimension greater than two. (For that matter, it would suffice to show that
irjX has nontrivial torsion.) If K is a connected subcomplex of an aspherical
2-complex, then ra(K) # 0 and the results in 6.3 show that ir1K is to a large
extent `homologically invisible'. Compare 4.5 and see [Dy91i] for further
results of this type.

Let K be a connected subcomplex of an aspherical 2-complex L and let G =
ker(7riK -* ir1L). By 6.2, A(G) is perfect. From this, Adams recovered two
results of Cockcroft. Namely, if G (or 7r1K) is free or abelian, then G has
no nontrivial perfect subgroups, and so K is aspherical by 6.3.1. From a
more general perspective, while the abelianization of the conservative radical
is always a torsion group [Ge83, Proposition 2.4], the conservative radical of
an arbitrary group need not be perfect; any finite group is equal to its own
conservative radical.

The perfect radical of a group G is the subgroup P(G) of G generated by
the family of all perfect subgroups of G. (This is also referred to as the
maximal perfect subgroup of G.) As with the conservative radical, P(G) is a
characteristic, and hence normal, subgroup of G. This is also the intersection
of all terms in the transfinite derived series of G. In the setting of 6.2, it follows
that A(G) C P(G). Even in this setting, this inclusion can be strict. For
suppose that G is the fundamental group of the complement of a nontrivial
knot in the 3-sphere with trivial Alexander polynomial [BuZi85, page 120].
Then A(G) is trivial, since G is locally indicable [Ho82]. Meanwhile, P(G) is
the derived group of G, which is nontrivial since the knot is nontrivial. Adams
[Ad55, page 487] gives an example with the same properties; in this case G
is a torsion-free one-relator group. All of these examples occur within the
Whitehead setting. On the other hand, the containment A(G) C P(G) is a
special feature of the Whitehead setting. For example, a finite abelian group
is equal to its own conservative radical, while its perfect radical is trivial.
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Theorem 6.4 ([BrDy8l, BrDySt83]) If K is a connected subcomplex of an
aspherical 2-complex L and G = ker(7r1K -4 ir1L), then P(G) E ra(K).

The proof of 6.4 relies on Strebel's theory of E-groups [St74]. The key step
lies in the fact [St74, proof of Proposition 2.41 that G/P(G) is conservative
in this case. In closing this section, there is the following theorem of Dyer.

Theorem 6.5 ([Dy93]) Let K be a connected subcomplex of an aspherical
2-complex L and assume that 7r1K is finitely presented. If ra(K) contains a
finite group, then that group is trivial, and so K is aspherical.

It should be noted that Beckmann [Be802] and Dunwoody [Du80] have both
exhibited non-aspherical finite connected acyclic 2-complexes with torsion-
free fundamental groups, thus answering a question of Cohen [Co78, page
104].

7 Finitely Generated Perfect Subgroups

As always, let K be a connected subcomplex of an aspherical 2-complex L
and let G = ker(ir1K -* ir1L). Using the fact that locally indicable groups
are conservative, Adams's result 6.3 implies that if G is locally indicable,
then K is aspherical. (An alternate proof of this follows quickly from [Ho82,
Theorem 5.2].) The following theorem of Howie shows that a weaker local
hypothesis on G also implies the asphericity of K. The proof employs the
towers mentioned in Section 4.

Theorem 7.1 ([Ho79]) If G is locally nonperfect (i.e., has no nontrivial
finitely generated perfect subgroups), then K is aspherical.

Proof: As in Chapter II of this volume,,7r2K is generated under the homotopy
action of the edge-path groupoid 7r1(K(1), K(0)) by the homotopy classes of
spherical diagrams f : C -+ K, where C is a cell decomposition of the 2-sphere
(see [Ge871]). Thus, f carries open cells of C homeomorphically onto open
cells of K. In particular, the image of a spherical diagram is a subcomplex of
the codomain complex. Let f be such, representing [ f ] E ir2K (for suitable
choice of basepoint). It suffices to show that [1] = 0. The following tower
strategy shows how to factor f through a finite connected acyclic 2-complex.

Let p : L -+ L be the universal cover, and let R be a connected component
of P `(K). Since S2 is simply connected, f lifts to a spherical diagram f0 :
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C -+ K. Then fO(C) = K° is a finite connected subcomplex of k, and
fo : C -3 KO is surjective. As KO is a subcomplex of the contractible 2-
complex L, H2(Ko; Z/nZ) = 0 for all n E Z. By 6.1, the finitely generated
abelian group H1K0 is torsion-free, and hence free abelian.

If 7r1Ko is not perfect, then there exists an epimorphism ir1Ko -* Z, and hence
a regular covering pi : K1 -4 KO with automorphism group Z. (In short, p1 is
a Z-covering.) Further, fo lifts to a surjective spherical diagram fi : C -4 K1,
where K1 is a finite connected subcomplex of K1. The crucial fact is this:

K1 has more 0-cells than does KO.

For otherwise p1 would restrict to a bijection Ki°l Ko°l of 0-skeleta, and to
a combinatorial surjection Kill -* Ko1l of 1-skeleta. From this it would follow
that the map 7r1K1 -4 7r1Ko is surjective, and hence that pl# : iriK1 -4 7r1Ko
is surjective, a contradiction.

Since Z is conservative [Ad55, Proposition 1), it follows that H2(Ki; 7L/nZ) _
0 for all n E Z. Since K1 is a subcomplex of the 2-complex K1i one further
has that H2(Ki; Z/nZ) = 0 for all n E Z. Applying 6.1, either ir1Ki is perfect
or else the lifting process can be repeated. As successive factorizations of f
through finite connected complexes Ki are obtained, the number of 0-cells in
the K, strictly increases. However, the number of 0-cells in each K, is bounded
above by the number of 0-cells in the finite complex C. Therefore, the process
must stop at some stage: After some finite number of steps, say m, one finds
that Km has perfect fundamental group. The net result is a factorization
fo = g o fm : C -+ Km -i K where fm is surjective, Km is acyclic and g is a
composite of inclusions and Z-coverings. (N.B. This factorization is referred
to as a maximal tower lifting of f0i the existence of such is the heart of the
towers method. See [Ho812, Lemma 3.1].)

The proof is completed as follows. Since xr1 K = G is locally nonperfect,
the homomorphism g#_: 7r1 Km -+ ir1 K is trivial, and so g lifts through the
universal covering u : K -4 K to a map g : Km -4 K. Now, H2Km = 0 and
the Hurewicz homomorphism ir2K -> H2K is an isomorphism. This implies
that g# : 7r2Km -4 7r2K is trivial. It follows that [fo] = 0 in 7r2K and hence
that [f] = 0 in 7r2K.

With a further application of the tower method, Howie proves the following
local version of 6.3.3b.

Theorem 7.2 ([Ho811]) Let K be a connected subcomplex of an aspherical
2-complex L and let G = ker(iriK -4 7r1L). If c is an element of finite order
in .7r1K, then there exists a finitely generated perfect subgroup P of G such
that c E P.



328 Bogley : X. WHITEHEAD'S ASPHERICITY QUESTION

8 Kaplansky's Theorem

Among the results from [Co54] is the fact that if K is a finite connected
subcomplex of an aspherical 2-complex and 7r1 K is a free group, then K is
aspherical. As noted above, this result was recovered by Adams, even without
the assumption that K is finite. Nevertheless, Cockcroft's approach merits
note.

Let K be a finite connected subcomplex of an aspherical 2-complex, where
7r1K is a free group. Cockcroft's proof that K is aspherical requires these
facts:

1. K is Cockcroft;

2. There exists a finite aspherical 2-complex Y such that 7r1Y = ir1K;

3. Any Z7r1K-module epimorphism between free Z7r1K-modules of the
same finite rank is an isomorphism.

The fact 1 is a feature of any subcomplex of an aspherical 2-complex, as has
been noted in Section 3. For fact 2, take Y to be an appropriate one-point
union of circles. As for 3, Cockcroft appealed to the fact [Ne49, page 213]
that if 7r1K is a free group, then Z r1K can be embedded in a division ring.
Cockcroft used 1 and 2 to show that there exists a finitely generated free
Z7r1K-module F such that ir2K ® F 2-1 F. The fact 3 then implies that
ir2K = 0. For if q : F -+ ir2K ® F is an isomorphism, then composing with
the projection p : ir2K ® F - * F yields an epimorphism p o g : F -4 F, which
by 3 is an isomorphism. Since rl-' (7r2K) C_ ker(p o rl) = 0, it follows that
ir2K=0.

The condition 2 is restrictive, depending heavily on the isomorphism type of
7r1K. However, it turns out that the condition 3 is not a restriction, as seen
in the following theorem of Kaplansky [Ka72, Mo69]:

Let G be a group and let A and B be n x n matrices over the complex group
ring CG, where n is a positive integer. If AB = 1, then BA = 1.

It follows that the condition 3 holds regardless of the structure of 7r1K.
The proof of Kaplansky's result is analytic. In search of an algebraic proof,
Kaplansky asks [Ka72, page 122] whether the same result holds if C is re-
placed by Z/p7G. Topological applications of Kaplansky's theorem are given
in [CoSw6l]. Here is a compilation of subsequent applications to Whitehead's
question.
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Theorem 8.1 ([BrDy8l, Co78, GuRa8l]) The following are equivalent for a
finite connected Cockcroft 2-complex X :

1. X is aspherical;

2. There exists a finite aspherical 2-complex Y such that 7r1X - 7rY;

3. cd 7r1X < 2 and ir1X is of type FL;

4. cd 7r1X < 3, H37r1X = 0 and ir1X is of type FL.

A group G is of type FL if the trivial module Z admits a resolution of finite
length by finitely generated free ZG-modules. The group G has cohomological
dimension less than or equal to n (cd G < n) if there is a projective ZG-
resolution of Z of length n. The implication 2 1 is a consequence of
[BrDy8l, Lemma 1.4]. (See also [BrDy8l, page 432] and [CoSw6l].) The
equivalence 1 q 3 appears in [GuRa8l]. The implication 4 I is from
[Co78].

Proof: The implications 1 2 3 4 are trivial. Set G = ir1X. Since
cd G < 3 and G is of type FL, there is a free resolution of Z

O-*F3-+F2->F1-*F0-*Z-+0

by finitely generated free 7GG-modules [Br82, XIII.6, Exercise 1]. There is
also the augmented cellular chain complex

0-+7r2X->C2-4C1 -3Co-*Z--0

of the universal cover X. By Schanuel's lemma [Br82, VIII.4.4], there is an
isomorphism

fr2X®F2®C1®FO =F3®C2®F1®Co

of ZG-modules. Let rkzG (resp. rkz) denote the rank of a finitely generated
free ZG-module (resp. the torsion-free rank of a finitely generated abelian
group). Now,

3 3 3

E(-1)`rkzG F1 = E(-1)'rkz (Z ®zG F1) = E(-1)'rkz H,G
1=o =o 1=0

since, for instance, the alternating sum of the torsion-free ranks of the ho-
mology groups of a finite chain complex of finitely generated abelian groups
is equal to the corresponding alternating sum of the torsion-free ranks of
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the chain groups themselves. More to the point, the hypotheses give that
H3G = 0 and that X is Cockcroft, whence H2G - H2X. As such,

3 2 2 2

E(-1)'rkz HiG = >(-1)'rkz HiX = E(-1)'rkz Ci = E(-1)'rkzc Ci
i=O i=o i=o i=o

where Ci denotes the ith cellular chain group of X. Upon equating ranks of
finitely generated free ZG-modules, it follows that there is an isomorphism

F=F2®C1®Fo=F3®C2®F1®Co

of ZG-modules. Thus, one finds that ir2X ®F = F. By Kaplansky's theorem,
7r2X=0.

It is perhaps worth noting that in each of [BrDy8l, GuRa8l, Co78], the
aforementioned portions of 8.1 were proved under the stronger hypothesis
that X is a finite connected subcomplex of an aspherical 2-complex, in which
case X is certainly Cockcroft. On the other hand, there are lots of finite
connected Cockcroft 2-complexes X which cannot appear as subcomplexes
of aspherical 2-complexes. For example, take X to be the (non-aspherical)
2-complex modeled on either the presentation (x, y : xyx-1 y, yxy-lx) for the
quaternion group of order eight, or the presentation (a, b, c : [a, b], [b, Cl, [c, a])
for the free abelian group of rank three.

If X is a connected 2-complex, then cd ir1X < 3 if and only if 7r2X is projective
as a 7G7r1X-module [Br82]. When X is Cockcroft, H37r1X = 0 if and only if
Z ®z,,x 7r2X = 0 (i.e., 7r2X is perfect as a Zir1X-module). In [HoSc83,
Corollary 3.4], conditions on ir1X are given under which there are no nonzero
(finitely generated) perfect projective Z7r1X-modules. When such an X is
Cockcroft, ir2X = 0 if and only if cd7r,X < 3 and H3-7r1X = 0.

9 Framed Links

Perhaps the most direct approach to Whitehead's question, indeed to as-
phericity in general, is to ask what a null-homotopy of a spherical map looks
like. This leads to a consideration of linkages in the 3-ball.

Let K be a subcomplex of a 2-complex L, and let f : S2 -* K be a spherical
map. The map f is nullhomotopic in L if and only if it extends to a map H :
B3 -4 L of the 3-ball into L. Simplicial techniques (e.g. [Br80, Si80, Wh411]
and Chapter II, Lemma 2.4 of this volume) provide that after a homotopy of
maps of pairs (B3, S2) -* (L, K), the closure of the inverse image of the open
2-cells of L under such a null-homotopy is a framed link in B3. This means
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that for each open 2-cell c2 C L, each connected component of the closure of
H-1(c2) is either an embedded solid torus D2 X S1 in the interior of B3, or
else an embedded solid cylinder D2 x B1 which meets the boundary sphere
S2 in just its end discs D2 x ±1. In either case, the null-homotopy H maps
each cross-sectional disc D2 x {z} characteristically onto the closed 2-cell c2.
The solid tori and cylinders may be taken to be pairwise disjoint; together
they comprise the framed link of the null-homotopy H.

Stefan [St82] showed that if L is assumed to be aspherical, then there are
restrictions on what sorts of framed links can arise from null-homotopies of
spherical maps into L. These results have been extended by Wolf [Wo91]. A
rough outline of these arguments goes as follows.

Let A be the framed link of a null-homotopy H : B3 -+ L. Deleting the
interior of A, the restriction of H determines a homomorphism h of the link
complement group into the free group ir1LM. Taking a planar projection
of the link that intersects itself only in double points, the link complement
group admits a (Wirtinger) presentation of the form P(r), where I' is a labeled
oriented graph in the sense of Section 4 (Toroidal components in A give rise
to simple circuits in r.) The generators are realized topologically by certain
meridional loops around the boundary of A that are connected to a base point
by arcs in B3. Thus, generators in this Wirtinger presentation are mapped
by h to certain ir1L(1>-conjugates of the homotopy classes of suitably based
versions of the attaching maps for the 2-cells of L. (Remark: Whitehead
[Wh41,] used the Wirtinger relations to show that the homomorphism h lifts
to a homomorphism of the link complement group into 7r2(L, DO). This alone
is a good heuristic explanation for the form of the so-called `Peiffer relations'
for relative ire-see [Br80] and Chapter II in this volume.)

Following Wolf [Wo91], consider a loop in the link complement that travels
around a longitude in the boundary of a toroidal component of A in such a
way that it does not link with a core of that embedded toroidal component
(a 'zero-parallel' in Wolf's terminology). Connecting this loop to the base-
point in B3 and applying h, the resulting element A E 7r1LM is a power of a
conjugate of an attaching map for a 2-cell of L. (The power arises from any
twisting that may be present in the embedding of the toroidal component.)
On the other hand, this based loop represents an element in the link comple-
ment group, and so under h determines a product B of ir1L(1)-conjugates of
attaching maps. The elements A, B lie in the kernel of the inclusion-induced
homomorphism 7r1LM -4 ir1L, and so may be lifted to elements a, 6 in the
relative group ir2(L, L(1)). Further, a/3-1 lies in the kernel of the boundary
map 7r2(L, L(1)) 9r1LM. When L is aspherical, it follows that a,3-1 = 1.
Whitehead's description of 7r2(L, L(1)) as a free crossed ir1L(1)-module then
allows one to make conclusions about the nature of the elements a, /, A, B,
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and eventually about the link A and the null-homotopy H. Key ingredients in
these conclusions are Papkyriakopoulos' characterization of Peiffer identities
[Pa63] (see Chapter II of this volume), and the fact that the centralizer of
any element in a free group (such as ir1L(1)) is cyclic.

It is interesting to note that many of the results that Stefan and Wolf obtained
by these methods are actually true if L is assumed only to be Cockcroft. A
notable exception is [Wo91, Theorem 5].

Theorem 9.1 ([Wo91]) If the cellular model of the presentation (x : r, s, t)
is aspherical, then r and s do not commute in the group presented by (x : t).

0

The point is that if r and s commute modulo t, then there is an identity
among these relations that gives rise to a spherical map of a certain form.
Wolf uses framed links to argue that such a map cannot arise in an aspherical
2-complex.

Returning to Whitehead's question, suppose that H : (B3, S2) -* (L, K) is a
null-homotopy for a spherical map into K, where L is aspherical. It is then
natural to consider only that portion of the framed link that corresponds to
the inverse image of the 2-cells of L - K. (This consists entirely of toroidal
components.) The same considerations as above then apply, with 7r1L(1) re-
placed by 7r1(K U L(1)). In particular, one still has a free crossed module
description of ir2(L, K U L(1)). What is lacking here is that one knows little
about the centralizers of elements in ir1K in general.

Sieradski showed in [Si80] that there are spherical maps into aspherical 2-
complexes for which no null-homotopy has a framed link that can be geo-
metrically split in a sense made precise in [Si80, Section 4]. This resolved in
the negative the question of whether an aspherical 2-complex is necessarily
diagrammatically aspherical, a result also obtained by Chiswell [ChCoHu8l].
(See [CoHu82, pp. 178-179] and [Hu81, Proposition 8] for further discus-
sions.) Sieradski showed [Si80, Theorem 1] that an aspherical 2-complex L is
diagrammatically aspherical if and only if each spherical map into L admits a
null-homotopy whose framed link is geometrically split. On the other hand,
diagrammatic asphericity is inherited by subcolnplexes. This indicates that
the heart of Whitehead's question is intrinsically tied to the complications
inherent in (unsplittable) links, a daunting prospect.

A reasonable alternative might be to try to use the complexities of links to
show that the answer to Whitehead's question is NO. A construction due to
Metzler provides one possible approach. Let r be a labeled oriented graph,
and consider a spherical diagram f : C --- K(r). Thus, C is a tessellation of
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S2 and f carries open cells in C homeomorphically onto open cells of K(r).
Each 2-cell c of C has four oriented boundary 1-cells, labeled in sequence by
a word of the form i(e)A(e)t(e)-1A(e)-1, where e is an edge of F. Thicken
S2 to a product S2 x D1. Place two arcs in c joining midpoints of opposite
boundary 1-cells of c so that the arc joining the two 1-cells labeled by X(e)
overcrosses the arc joining i(e), t(e). Having done this for each 2-cell of C,
there results a link C in S2 x D1. (This is the reverse of the process that
produces a Wirtinger presentation for a link complement group.) The link
G comes naturally equipped with a planar projection; each segment between
undercrossings of this projection is labeled by a vertex of r, and each compo-
nent of G can be consistently oriented. Conversely, a planar link projection
that is suitably labeled and oriented determines a spherical diagram in K(r).
This construction was used in [Ro90] to produce examples of finite labeled
oriented trees r for which K(I') is aspherical, but is not diagrammatically
aspherical, thus answering a question of Gersten [Ge871]. Applications to the
Whitehead question of some combination of this link construction and the
geometry of framed links await further developments.

10 Open Questions

(with J. Howie)

1. Labeled oriented trees: Are ribbon disc complements aspherical? That is,
if I' is a finite labeled oriented tree, is 7r2K(F) = 0? Howie has shown [Ho85]
that if IF has diameter not more than three, then K(F) is aspherical and
ir1K(F) is locally indicable. It appears that direct attempts to exploit the
combinatorial structure of labeled oriented trees are bound to be complicated.

2. Residual nilpotence: Let R, S be distinct factors from an efficient normal
factorization of a finitely generated free group F, where the factorization
involves at least three distinct terms. Is R fl S contained in [R, S]? By 4.5
it would suffice to show that the group Q = F/[R, S] is residually nilpotent.
An example from [Bo91] suggests that this may not be the case in general.
Failing that, can one prove an analogue of 4.5 that `pushes R fl S down the
derived series of Q'? Namely, is (R fl S)/[R, S] contained in P(Q)?

3. Acyclic coverings: For a connected 2-complex X, let c(X) denote the set of
all subgroups N of ir1X such that X is N-Cockcroft. Clearly, ra(X) C c(X).
Both of these classes of subgroups are partially ordered by inclusion. Prop-
erties of c(X) and related classes are discussed in [DyHa92, GiHol, GiHo2,
Pr922]; in particular[DyHa92, GiHol], the poset c(X) has minimal elements.
(See also [HoSc83, Proposition 3.1] and Chapter IV of this volume.) Does
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ra(X) have minimal elements? Is the intersection of perfect groups a perfect
group?

Suppose that K is a connected subcomplex of an aspherical 2-complex L and
G = ker(7r1K -+ ir1L). As discussed in Section 6, A(G), P(G) E ra(K) with
A(G) C P(G). Is A(G) minimal in c(K)? If this were known to be the case,
then Whitehead's question would become: Is G locally indicable?

4. Equations over groups and the Kervaire problem: If X is a connected
subcomplex of a connected 2-complex Y, under what circumstances does the
inclusion of X into Y induce a monomorphism of fundamental groups? As
a special case, suppose Y is contractible, and X is connected and acyclic.
The question is then equivalent to: is X contractible? If this question has
a positive solution, then there are no counterexamples to the Whitehead
conjecture with tower-height 0 (in the sense of the proof of 7.1).

Is ir1X -4 7r1Y injective if ir1X is locally nonperfect and H2(Y, X : 7L/pZ) = 0
for all primes p? (See [Kr85].)

Suppose that K is a connected subcomplex of an aspherical 2-complex L
and G = ker(7r1K -* ir1L). Is K aspherical if G is assumed to be (locally)
residually finite?

5. Homology and group theory: Suppose that K is a connected subcomplex of
an aspherical 2-complex. Is ir1K torsion-free? Is cd ir1K < 3? Is H37r1K = 0?
Is ir2K finitely generated as a Z7r1K-module? Can anything be said about
the centralizer of an element in 7r1K?



Chapter XI

Zeeman's Collapsing
Conjecture

Sergei Matveevl and Dale Rolfsen2

1 Introduction

The subject of this chapter is the rather audacious conjecture put forward in
1964 by E. C. Zeeman.

Zeeman's Conjecture (Z) If P2 is a contractible 2-dimensional polyhedron,
then p2 is 1-collapsible, that is, p2 X I collapses to a point.

As already pointed out in Chapter I, §4.2, (Z) implies both the Poincare
conjecture (P) and the Andrews-Curtis conjecture (AC). It is an affirmation
of the subtlety of low-dimensional topology that these old basic conjectures
are still unsolved, despite strenuous efforts of generations of topologists. The
attempts to solve (Z) have led mathematicians to discover novel ideas and
powerful methods in low-dimensional topology, and to a deeper understanding
of the strange and mysterious world of 2-dimensional complexes.

Although there are many candidates for counterexamples, (Z) has not been
refuted (if it is false!) because, for the present, we have no methods of de-
tecting non-collapsibility for contractible 3-dimensional polyhedra of the form
p2 x I. As a result, the main achievements in investigation of (Z) consist in

'This author was partially supported by GB-6 from Chelyabinsk State University and
by a grant from the Canadian Natural Sciences and Engineering Research Council

2This author was partially supported by by a grant from the Canadian Natural Sciences
and Engineering Research Council.
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(1) proving it for different special types of P2;

(2) proving of weakened and disproving of strengthened versions of (Z).

The first contributions to (1) were made by P. Dierker, W. B. R. Lickorish,
D. Gillman [Di68, Li70, Gi861. and may be called collapsing by adding a cell.
They proved the 1-collapsibility for each 2-dimensional polyhedron P2 sat-
isfying the following: there exists a cell Bk of dimension k < 3 such that
P2 n Bk is a (k - 1)-cell in the boundary of Bk and p2 U Bk \ 1 *1 (see §3.1).
Note that if Po = P2 3-deforms to a point, then for an integer n > 0 there
exist a sequence

P02 CPoUBo ,Pi CPiUBiI , ...

where each Bk' is a cell of dimension k1 < 3 and P,2 n Bk' is a (k1 - 1)-cell.
Hence the above result can be viewed as the first step in proving (Z) modulo
(AC). For example, the 1-collapsibility of the dunce hat, Bing's house, the
house with one room3 , and the Abalone4 (see Chapter I, §2.2, and Figure 1
below) can be easily proved using collapsing by adding a cell. Actually, this
method allows one to collapse p2 X I to a vertical segment of the form {*} x I.

Figure XI.1. House with one room; Abalone

There exist 1-collapsible polyhedra p2 for which P2 x I cannot collapse to
{*} x I. In §3, we will discuss the examples K(p, q, r, s) of W. B. R. Lickorish
which illustrate this phenomenon.

'The house with one room consists of the surface of a large cube minus a rectangle on
roof, plus walls of inner box minus a small door, plus a rectangle minus another door, plus
the walls and ceiling of a tunnel connecting the doors.

'The Abalone is the complex of the trivial group presentation (x, y I x,xy2x-,y-1); it
is homeomorphic with the house with one room.
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A second general method for collapsing p2 X I was proposed by A. Zimmerman
[Zi78] (see also [CoMeZi8l, CoMeSa85]) and is called prismatic collapsing. At
first we get rid of the 3-dimensional part of P2 x I as follows: for each 2-cell C2
of p2 we collapse C2 X I to the union of 0C2 x I and a 2-cell C' C C2 X I such
that the direct product projection maps Int C` onto Int C2 homeomorphically.
Then we look for a collapse of the resulting 2-dimensional polyhedron. One
may say that prismatic collapsing is a very rough method, but exactly this
roughness allows one to give an algebraic criterion for prismatic collapsibility
of p2 x I: attaching maps for 2-cells of p2 have to determine a basis-up-to-
conjugation in the free fundamental group of 1-dimensional skeleton of p2.

Like other conjectures that have significantly influenced the development
of mathematics, (Z) is very sharp in the following sense: As a rule, its
slightly weakened versions admit positive solutions and its slightly strength-
ened versions prove to be false. For example, (Z) is true modulo 2-expansions
(see Chapter I for the definition of 2-expansion): any contractible 2-dimen-
sional polyhedron p2 can be expanded by a sequence of 2-expansions to a
2-dimensional polyhedron Pz such that P1 x I \ {*} [KrMe83]. One may
relax (Z) admitting the repeated multiplication of p2 by I. In this weakened
form, it becomes true: for each contractible p2 there exist an integer n such
that P2 x I" \ {*}, [Di68, Li70]. In fact, n = 6 suffices for all P2 [Co75]. It
is surprising that there is such a large gap between the known (n = 6) and
Zeeman's conjectured (n = 1) values of n.

On the other hand, a generalization of (Z) to multidimensional polyhedra
is false, since for any n > 2 there exist a contractible polyhedron P" of
dimension n such that P" x I is not collapsible [Co77]. The proof of non-
collapsibility is based on a very specific (one may say bad) local structure of
P". So the idea to investigate (Z) for 2-dimensional polyhedra with a nice
local structure (such polyhedra are called special) seems to be very promising.

The first step in this direction was made by D. Gillman and D. Rolfsen
[GiRo83]. They proved that if p2 is a special spine of a homology 3-ball
M3, then P2 x I collapses onto a homeomorphic copy of M3. It follows that
(Z) is true for all special spines of a genuine 3-ball and that (Z) for special
spines is equivalent to the Poincare Conjecture. Later this result was reproved
by S. Matveev [Ma871]. He used another method which proved to be sufficient
for clarifying the situation for all special polyhedra. It turned out that (Z)
for special polyhedra that cannot be embedded in a 3-manifold is equivalent
to the Andrews-Curtis Conjecture [Ma8721. Concluding this introduction,
one can say there exist two possible ways of disproving (Z): via disproving
either the Poincare or Andrews-Curtis Conjectures and via construction of
counterexamples with a bad local structure. But we can not exclude the
possibility that (Z) is true!
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2 Collapsing

Collapsing was defined in Chapter I, §2.2, in several categories. Here we
consider collapse of polyhedra, in other words, simplicial collapse with respect
to some (unspecified) triangulation. It is a geometric and very special type
of homotopy equivalence, and is the underlying idea of Whitehead's simple-
homotopy theory.

If a polyhedron is collapsible, i.e., collapses to a point, then it is contractible.
For 1-dimensional polyhedra, the converse is true: each contractible 1-dimen-
sional polyhedron is a tree and hence is collapsible. But it was pointed out
in Chapter I that there exist contractible but not collapsible 2-dimensional
polyhedra. The famous dunce hat, Bing's house with two rooms and slightly
less famous house with one room (also known as an abalone [Ik71]; see Figure
1) serve as examples. Each of them is contractible but not collapsible because
of the can't start-argument: there is no free edges to start the collapse (see
Chapter I, §2.2). For 2-dimensional polyhedra, the can't start argument is a
unique obstacle to collapsibility. The following simple criterion is true.

Criterion A 2-dimensional polyhedron P can be collapsed to a subpolyhedron
of dimension < 1 if and only if P contains no 2-dimensional subpolyhedra
without free edges.

In particular, each contractible non-collapsible 2-dimensional polyhedron con-
tains a 2-dimensional subpolyhedron having the can't start-property. The cri-
terion makes it very easy to decide whether a given contractible 2-dimensional
polyhedron p2 is collapsible. If it is collapsible, then any attempt succeeds; if
not, then it stops on a 2-dimensional subpolyhedron Q2 C P2 which does not
depend on the chosen way of collapsing (see Chapter I, §2.2, for the proof).

The situation is much more complicated in dimension 3. The result of collaps-
ing a 3-dimensional polyhedron p3 depends heavily on a chosen triangulation
of p3 and on a chosen sequence of elementary simplicial collapses. For exam-
ple, there exist non-collapsible triangulations of a 3-ball [Go68]. Moreover,
if K is a collapsible triangulation of a 3-ball, we can not be sure that each
sequence of elementary simplicial collapses reduces it to a point; it is possible
that we get a 2-dimensional subpolyhedron with the can't start-property (for
instance, the dunce hat or Bing's house). These are two reasons why the
problem of collapsing P2 x I is so hard.

Let us recall some simple facts that are useful for altering collapses. First,
a collapse can always be replaced by one in which simplices are removed in
non-increasing order of dimension; see Chapter I, (14). Second, if P is a
collapsible polyhedron, then for any given point x E P one can collapse P
onto x (Proof: choose a triangulation K of P such that x is a vertex of K.
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Perform on K all collapses of dimension > 2 . We get a tree containing all
vertices, and every tree can be collapsed to any of its vertices). Third, if Q is
a subpolyhedron of a polyhedron P, and N is a regular neighborhood of Q in
P, then a collapse P \, Q can be replaced by P \, N \ Q; see [Li70, Co77].

3 Some Special Ways of Collapsing P2 X I

3.1 Collapsing by adding a cell

A very simple method of collapsing p2 x I is called collapsing by adding a
cell. It works for each polyhedron that becomes collapsible after a single
elementary expansion.

Theorem 3.1 ([Di68, Li70, Gi861) If Q is a collapsible polyhedron and Q
collapses to P by an elementary collapse, then P x I \, {*}.

Proof: Since Q collapses onto P by an elementary collapse, we have Q =
P U B" and P fl B" = B"-1 C 8B", where B", B"-1 are cells. Note that
P x I Q1 where Q1 = P x {0} U (Bn-1 x I)); see Figure 2. Since Q1 Q
and Q\{*}, wehave PxI\,{*}.

Figure XI.2.

Remark 1 The proof of Theorem 3.1 can be modified to construct a collapse
of P x I to a vertical segment of the type {*} x I C P x I. To see this, choose
a point x E P - Bn-1 and collapse P x I onto Q' = Q1 U ({x} x I) instead of
Q1. Since Q1 is collapsible, it can be collapsed to x. This collapse determines
a collapse of Q1 onto {x} x I.

Remark 2 If a contractible polyhedron Q collapses to P by two elementary
collapses and Q - P is not connected, then P x I \, {*}. The proof is similar
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to the proof of Theorem 3.1; we use both sides of I to collapse P x I onto a
homeomorphic copy Q, of Q, see Figure 3.

Figure XI.3.

3.2 Non-collapsibility to a vertical segment

The method of collapsing by adding a cell allows one to prove (Z) for a large
class of contractible 2-dimensional polyhedra. For example, the dunce hat and
both of Bing's houses belong to this class. But the naive hope the method is
all-powerful proved to be false. The point is that there exist many contractible
2-dimensional polyhedra that can not be collapsed to a vertical segment ( see
Remark 1 to Theorem 3.1). Denote by K(p, q, r, s) the geometrical realization
of the group presentation < a, b I aPb9, a'b8 >, where ps - rq = ±1. In other
words, K(p, q, r, s) is the wedge KI = a V b of two circles a, b with two 2-cells
CI, C2 attached along their boundaries by the words apb9, a'b8, respectively.
Each K(p, q, r, s) is a contractible 2-dimensional polyhedron.

Theorem 3.2 ([Li70, Wr71]) If each of p, q, r, s is not equal to ±1 , then
the polyhedron K = K(p, q, r, s) can not be collapsed to a vertical segment.

Proof: Suppose K x I\ {x} x I for a point x E K. Then K x I collapses to a
regular neighbourhood N3 = N2 x I of {x} x I in K x I, where N2 = N(x, K)
is a regular neigbourhood of x in K. If x E KI, we replace x by a point y such
that yEK-KIand yEN2;it is clear that KxI\N3\, yxI. So we
can assume without loss of generality that x E Int C, and N2 C Int C1. Then
(KxI) - hit N S'xI.Sinceir,((KxI)-IntN3) Zt:
< a, b I a'b8 ># Z, we have a contradiction.

Actually, the proof is valid for any 2-dimensional polyhedral CW complex K
such that 7r,(K-Int C) Z for each 2-cell C of K .
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3.3 An improbable collapse

It follows from §3.2 that K(2, 3, 3, 4) x I can not be collapsed to a vertical
segment. Nevertheless, in 1973, W. B. R. Lickorish found a very delicate and
clever collapse of K(2, 3, 3, 4) x I to a point [Li73].

Theorem 3.3 K = K(2, 3, 3, 4) is 1-collapsible.

Proof: Denote by P the polyhedron K1 x I with six 2-cells Ci attached
to K1 x I along their boundaries, 1 < i < 6. The boundary curves i of
Ci are depicted on Figure 4. The following conditions must be satisfied:
1) ll and 12 trace monotonically the word a3b4 beginning with the points
A E 11, B E 12; 2) 13, l4, l5 trace monotonically the word a2b3 beginning
with the points A E l3i B E l4, C E l5, respectively. Let H1, H2, H3 be
small open 2-discs as shown on Figure 4. We claim that the polyhedron
Pl = P - (H1 U H2 U H3) \ {*}. The proof is left as an exercise (recall that
any attempt to collapse a collapsible 2-dimensional polyhedron does succeed).

a

Figure XI.4.

b

To construct a collapse of K x I, present it as Kl x I with two cylinders
C1 x I, C2 x I attached along their lateral surfaces by maps %P1 = 4'1 x Id :
3C1 xI -+ K1 xI, I'2 = 02xId : f7C2xI -4 K1 xI, where of : VCi -4 K1,i =
1, 2, are attaching maps for 2-cells of K. Consider two discs D1, D2 C C2 X I
and three discs D3, D4, D5 C Cl x I as in Figure 5. We require that, for each
index 1 < i < 5, the disc Di be attached to the curve li C K1 x I, such that
the polyhedron (K1 x I) U (U5 1Di) coincides with P.



342 Matveev/Rolfsen : XI. ZEEMAN'S COLLAPSING CONJECTURE

V3

V2

C, X I

Figure XI.5.

C2xI

Let V, be the 3-ball bounded by D, U D2 U (aC2 x I) and let V2, V3 be the
3-balls bounded by D3 U D4 U (5C1 x I) and D4 U D5 U (9C, x I), respectively.
We collapse K x I to the polyhedron P, = P - (H, U H2 U H3) as follows:

1° Collapse C,xItoV2UV3U(.C1xI)andC2xItoV1U(0C2xI);

2° Pierce through the disc H, into V3 and exhaust its interior;

3° Pierce through the disc H2 into V, and then through the disc H3 into
V2 and exhaust the interiors of V,, V2.

Recalling that P, \, {*}, the proof is complete.

It is known at the present that if p = 0, ±1, ±2, then (Z) is true for K(p, q, r, s)
[We73, WeWa78]. The question whether (Z) is true for all K(p, q, r, s) with

p 1, 1 q 1, j r 1, 1 s I > 2 remains open up to now. We leave it to the
reader to prove that K(p, q, r, s) embeds in S3, and is so a spine of B3, when
ps - qr = ±1.

Hint For a pointed space (X, {*}) and two maps f; : X -4 Y, i = 1, 2
define the reduced two-sided mapping cylinder C(f1i f2) as

(Y1 U (X x [-1,1]) U Y2)/R,

where the equivalence relation R is generated by equalities (x, -1) = fi(x),
(x,1) = f2(x), (*, t) = (*, 0) for all x E X and t E [-1,1].

Consider two curves 11 and 12 on the torus T2 = 91) 2 x 8D2 c a(D2 x D2) S3
that intersect in a single point {*} and represent the classes (p, q) and (r, s) in
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the torus' homology. Present S3 as the reduced two-sided mapping cylinder
C(p1, p2), where p1 and p2 are projections of T2 onto cores 9D2 x {0} C 8D2 X
D2 and {0} x aD2 C D2 x aD2 of the solid tori. Then K(p, q, r, s) C(pi, p2),
where p; are the restrictions of pi onto 11 U 12, i = 1, 2.

3.4 Prismatic 1-collapsing

The notion of prismatic 1-collapsing was proposed by A. Zimmermann [Zi78];
see also [CoMeZi8l, CoMeSa85]. It is inextricably tied to whether the at-
taching maps for the 2-cells of CW-complex P determine a basis-up-to-con-
jugation in the fundamental group of its 1-dimensional skeleton. Following
[CoMeSa85], we prefer to work with CW-complexes, even in the PL category.
Thus we adopt the notion of a PLCW-complex; see Chapter I, §1.4.

Let P be a 1-dimensional polyhedron P1 with n 2-cells Ci, 1 < i < n, attached
to it along their boundaries. For each i choose a 2-cell Ci C C, x I such that
the direct product projection maps Int Ci onto Int Ci homeomorphically.
(Note that this condition is stronger than the one of [CoMeSa85], §(2.6).)
We shall refer to the polyhedron P,, = (P1 x I) U (U 1Ci*) C P x I as a
vertical resolution of P.

Definition A 2-dimensional PLCW-complex P is called prismatically
1-collapsible (prismatically collapsible) if it has a collapsible vertical reso-
lution.

Since P x I \, P, each prismatically 1-collapsible polyhedron is 1-collapsible.

For simplicity we shall consider in this section only polyhedra that can be
obtained from a wedge P1 = a1 V ... V an of n circles a1,. .. , an by attaching
n 2-cells Ci, l < i < n. Particularly, standard complexes of (finite) presenta-
tions (see Chapter I, (9) ) belong to this class.

The common point of the circles forming the wedge will be denoted by eo.
For each 2-cell Ci choose a basepoint ei E BCi. We shall suppose that the
attaching map Vi : 8Ci -* P1 satisfies the condition (p1(ei) = eo. Then each
(pi determines an element [pi] of the group ir1(Pl, eo) which is isomorphic to
the free group F(al,... , a,,.), see Chapter I, §1.3.

Definition A set of elements w1i ... , w E F(al,... , an) is called a basis-
up-to-conjugation if there are elements 91 i ... , gn in F(a1,... , an) such that
{giwig, 1 1 < i < n} is a basis in F(a1 i ... , an).

Theorem 3.4 ([CoMeSa85]) If P2 is a prismatically 1-collapsible polyhedron
with attaching maps (pi, then the elements wi = [cpi], 1 < i < n, form a basis-
up-to-conjugation in F(al,... , an)
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Proof: Let P = (P1 x I) U (UL1Ci) be a collapsible vertical resolution of
P2. For each i, 1 < i < n, choose a point xi E Int Ci . Since P is collapsible,
one can collapse it onto a tree T C P such that each xi is an endpoint of T.

Denote by B a regular neighbourhood of UL1xi in P,,. Then B is a union of
2-discs, B = UL 1Bi, and P can be collapsed onto T U B. Let Q =
B and TB = (T U B)-Int B, see Figure 6. Then Q P1 x I P1 and
the collapse P \, T U B induces Q \ TB. The deformations TB T Q N P1
determine an isomorphism a : lr1(TB) -+ -7rl (Pl). Denote by v1,.. . , v a basis
of 7r1(TB) generated by the curves 8B1, ..., aBn C TB, respectively. It follows
easily from the construction of a that for each i, 1 < i < n, the element a(vi)
coincides with wi up to conjugation.

Figure XI.6.

In a sense, the converse of Theorem 3.4 is true. It is a generalization of
Theorem 3 of [CoMeSa85].

Theorem 3.5 I f {w1, ... , wn} is a basis-up-to-conjugation of F(al,... , an)
and if P1 is a wedge of n circles, then there are attaching maps (Pi : (aCi, ei) -*
(P1, eo), 1 < i < n, such that [pi] = wi and the resulting polyhedron
p2 = Pl U, (UL1Ci) is prismatically 1-collapsible.

For the proof of Theorem 3.5, we need two lemmas.

Lemma 3.6 Suppose 0 : 71 (P1, eo) - irl (P1, eo) is an automorphism, where
P1 = a1 V... Van is the wedge of n circles with the wedge point eo. Then there
is an embedding h : (P1 x I, eo x I) -4 (P1 x I, eo x I) such that h induces the
automorphism 0 of the group ir1(P1 x I, eo x {0}) , and P1 x I \ h(P1 x I).
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Proof: If the conclusion of Lemma 3.6 is true for two automorphisms, then
it is evidently true for their composition. According to the Nielsen theorem,
each automorphism of F(a,, . . . , a superposition of
automorphisms (moves) of two types. Both moves map each generator to
itself except the generator a, which is mapped to ai 1 by the first move, and to
aiaj, i # j, by the second move; compare Chapter 1, (27) and (19). The first
move can be realized by a homeomorphism h of the form h1 x Id : P' x I -*
P1 x I, where the restriction of the homeomorphism h1 : P1 -4 P1 onto aj is
the identity for j # i and reverses the orientation of ai. It is clear from Figure
7 how one can realize the second move; P1 x I collapses onto the shaded area
which is the image of P1 x I under an embedding h : P1 x I -* P1 x I. 0

Figure XI.7.

Lemma 3.7 Let < a1,... , a.,, I R1, ... , R,, > be a presentation of the trivial
group, where R, = SaiS[ 1 (1 < i < n) for some (not necessarily reduced)
words Si in generators a1,. .. , an. Denote by ri the element of F(al,...,
corresponding to Ri. Then there are attaching maps iii : (aCi, ei) -* (P1, eo)
such that [0j] = ri and the resulting polyhedron Q = P1 U, (U 1Ci) is pris-
matically collapsible.

Proof: Define words Xi inductively by the rules X0 = 1, Xi = SSX2iXi_1 for
1 < i < n. Then the words Ri and Ry = XiaiXT 1 determine the same element
in F(a,, ..., an), 1 < i < n. The advantage of new relators RZ is that a terminal
segment of each next conjugator Xi coincides with the previous conjugator
X2_1. Choose attaching maps Oi : (aCi, ei) (P1, eo) to trace monotonically
the relators Ri. T o prove that the resulting polyhedron Q = P1 U,, (U 1 Ci)

is prismatically 1-collapsible, take 2-cells CZ in Ci x I with aC; C aCi x I,
as drawn in Figure 8.
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X; ai Xr'

Figure XI.8.

For each i, the image of aC, in P' x I is a circle with a tail ti. A little
care is needed to have ti C ti+1 for all i, 1 < i < n - 1; see Figure 9.
Then all tails are contained in tn, and to does not prevent the collapse of

1C;)CQxItoapoint.

Figure XI.9.

Proof of Theorem 3.5: For 1 < i < n, write wi = givigi 1 where v1 i ... , vn
is a basis of F(a,, ... , an). Denote by / the automorphism of F(a,, ... , an)
sending ai to vi. If we take si we have 0(siais7') = wi,1 < i < n.
Present each element si by a word Si . According to Lemma 3.7, there are
attaching maps V)i : (0C;, ei) -* (P', eo) such that [Vii] = siaisi and the
resulting polyhedron Q = P1 U0 (U 1Ci) has a collapsible vertical resolution
Q. = (P' x I) U (U 1Ci ). By Lemma 3.6, construct an embedding

h:(P'xI,eox1)-4 (P' xI,eoxI)
realizing 0. If we re-attach the 2-cells C; of Q to P' x I via the embedding
h, we obtain a vertical resolution P of a polyhedron P = P1 U" (U2 1Ci).
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Each attaching map cpi : OD' -+ P1 has the form (pi = phz/i,, where V5_
aD2 -4 Pl x I is the the attaching map for the 2-cell C, and p : P1 x I -4 P1
is the projection. Since 3(siaisi 1) = givigi 1 = wi, attaching maps (pi satisfy
the conditions [Vi] = wi,1 <_ i < n. By construction, the embedding h can be
extended to an embedding h : Q -+ P,,. Now we have P \, h, (Q,) \ {*}.

Note that Theorems 3.4 and 3.5 give a geometrical characterization of a basis-
up-to-conjugation in F(a1 i ... , an) : the words w1,. .. , w form a basis-up-
to-conjugation if and only if they represent based homotopy classes in which
attaching maps for 2-cells may be chosen so as to yield a prismatically 1-
collapsible polyhedron. Simultaneously, Theorem 3.5 allows one to construct
a great variety of polyhedra satisfying (Z) : for each basis-up-to-conjugation
w1, ... , w one can construct an example (we do not assert that the geometri-
cal realization of the presentation < a1, ... , a, I w1 i ... , w,, > is prismatically
1-collapsible; compare §7, Problem 1.)

As we have mentioned in the Introduction, prismatic 1-collapsing is a rather
rough instrument. There exist many 1-collapsible but not prismatically 1-
collapsible polyhedra. For instance, K(2, 3, 3, 4) (see §3.2) is not prismat-
ically 1-collapsible. Since the words a2b3, a3b4 do not form a basis-up-to-
conjugation, Theorem 3.4 yields a proof. For a more elegant and simple
proof one can use the following criterion of A. Zimmermann.

Theorem 3.8 If p2 is prismatically 1-collapsible, then there is a point
v E P2 such that the link of v has an articulation point.

An articulation point of a graph G is a point x such that G - {x} has more
components than G. In fact, Zimmermann's results are more general than
Theorem 3.8, at least in the simplicial case; see [Zi78]. Actually, Theorem
3.8 is a consequence of Theorem 3.4 and Whitehead's lemma [Wh36], but a
direct geometric proof which is a modification of the one in [Zi78] may be
formulated. Note that for a standard complex P2 of a group presentation,
the only candidates for an articulation point in their link are the vertex eo
and points on free faces of P2.

Proof of Theorem 3.8: Let P = (P1 x I) U (Un 1C,) C P2 x I be a
collapsible vertical resolution of p2. Define a point x = (x', t) E P1 X I C P
to be positive if the segment {x'} x [t, 1] C {x'} x I has no common points
with boundary curves of 2-cells. The point x is called negative if the same
is true for the segment {x'} x [0, t]. Denote by Q the union of all points
of P that are neither positive nor negative. Since Q contains all 2-cells
C, , Q is a 2-dimensional subpolyhedron of P,,. Let T be a triangulation
of Q, sufficiently fine for the following arguments. Since P is collapsible,
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there exists a free open 1-dimensional simplex 8 of T. Suppose 8 is not
vertical, that is, its projection to PI x I does not consist of a single point.
Then 8 lies in the boundary curve of a 2-cell C,, and the link in P of the
projection onto P of every point x E 8 is homeomorphic to a closed segment,
and hence has an articulation point. Let 8 be vertical, that is, have a form
8 = {x'} x (t1,t2) C P1 x I, and the collapse from 8 enters P1 x I. Then the
link G of 8 in P x I can be identified with the link of x' in P. Since 8 is free
in T, exactly one vertex v of G belongs to Q. Denote by V+ and V_ the sets
of positive and negative vertices in G. It is easy to see that an edge of G can
not have one vertex in V_ and the other in V+. It follows that if V+, V_ # 0,
then v is an articulation point of G. If V+ = 0 or V_ = 0, then there is an
edge in G with both endpoints at v and degree of v is at least 3; hence, v is
an articulation point again. The existence of an articulation point in the link
of a point in P is proved.

4 1-Collapsibility Modulo 2-Expansions

Let n-dimensional polyhedra P'", Q" have the same simple-homotopy type.
It is known that if n > 2, then P" can be transformed to Q' by a se-
quence of elementary expansions and collapses of dimension _< n + 1; see
[Wa66]. For n = 2, however, the question is open up to now; the existence
of a 3-dimensional deformation is a conjecture equivalent to the generalized
Andrews-Curtis conjecture (AC); see Chapter I, §4.1.

Suppose now that p2 3-deforms to Q2. Is it possible to replace the 3-
deformation by an expansion P2 / P2 x I and a collapse p2 X I \ Q2?
It turns out that the answer is positive modulo 2-expansions of P2.

Theorem 4.1 ([KrMe83]) If P2 3-deforms to Q2, then there exists a 2-
dimensional polyhedron P1 such that p2 / Pl and Pl X I \' Q2.

Every 3-deformation of p2 to Q2 can be replaced by a sequence of elementary
expansions and collapses of dimension 3 such that each elementary expansion
is followed by an elementary collapse onto a 2-dimensional polyhedron; see
[Wr75]. Hence, Theorem 4.1 can be proved by an induction on the number
of elementary transient moves. The inductive step is given by the following
lemma.

Lemma 4.2 Let p2 J` P2 U B3 be an elementary expansion and let
P2 U B3 \' Q2 be an elementary collapse. Then for every 2-dimensional
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expansion Q2 /` Qi there is a 2-dimensional expansion p2 7 P12 such that
Pl x I collapses onto a homeomorphic copy of Qi X I.

Proof: We think of Q2 as being embedded into p2 U B3 such that
Q2 = (P2 U B3) fl Q. The boundary 0B3 of B3 consists of two 2-cells

B2 = P2 fl B3 and B2 = Cl(aB3 - Bl).

Choose a small 2-cell A C B2 such that A fl Cl(Q1 - Q2) = 0. Then there
exists a 2-dimensional expansion of p2 to Pl = (P2 U aB3)-Int A.

Consider the polyhedron

Qi=((Q2-IntA)x{0})U(aAxI)U((0B3-IntA)x{1})CPP xI.

Since (OAx I)U((0B3-Int A) x {1}) is a 2-cell, Qi is homeomorphic with Q.
One can show that the homeomorphism of Qi onto Qi can be extended to an
embedding i : Qi X I -+ P1 x I (see Figure 10) such that p12 x I \' i(Q1 x I).

Figure XI.10.

Using Theorem 4.1, one can construct many examples of 2-dimensional poly-
hedra satisfying (Z) : an appropriate 2-expansion of every polyhedron p2
3-deformable to a point is 1-collapsible.

5 Zeeman Conjecture for Special Polyhedra

5.1 A quick survey on special polyhedra

As we have mentioned in the Introduction, the generalization of (Z) to multi-
dimensional polyhedra is false. The proof is based on a bad local structure
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of the counterexample. It seems to be natural therefore to investigate (Z)
for 2-dimensional polyhedra having a nice local structure. Fake surfaces and
special polyhedra fit this setting perfectly.

Definition A compact 2-dimensional polyhedron is called a fake surface
if each of its points has a neighbourhood homeomorphic to one of the types
pictured on Figure 11.

1. Non-singular point II. Triple line

Figure XI.11.

III. Vertex

The singularities II, III are, in a sense, the only stable ones. All other
singularities that a 2-dimensional polyhedron can have are unstable. For
example, a fourfold line can be destroyed by small deformations of attaching
maps of 2-cells. In R3, soap films exhibit singularities exactly of types II and
III. The concept of fake surfaces was introduced by Hiroshi Ikeda [Ik71].

A fake surface P stratified by subsets V(P) C S(P) C P where V(P) is the
set of vertices and S(P) is the singular (multi)graph consisting of vertices and
triple lines. The connected components of P - S(P) are called 2-components
of F.

Definition A fake surface P is called a special polyhedron if the stratification
V(P) C S(P) C P is a cellular one; that is V(P) # 0, each component of
S(P) - V(P) is an open arc and each 2-component of P is an open 2-cell. A
spine of a 3-manifold is said to be special if it is a special polyhedron.

Sometimes the adjective standard rather than special is used. We regard these
terms as synonyms. It is known that every 2-dimensional polyhedron can be
3-deformed to a special one [Wr75], and that every 3-manifold has a special
spine [Ca65]. Both of Bing's houses (see the Introduction) are examples of
special spines for the 3-ball.

Consider the modifications (moves) of special polyhedra described by Figure
VIII.11. The moves Ti and T3 alter a small neighbourhood El of a vertex, the
move T2 changes a small neighbourhood of an edge. The part of the polyhe-
dron which does not appear in the figures is understood to be fixed. Note that
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exactly one of the polyhedra pictured on Figure VIII.11 can not be realized
inside a 3-manifold. The following theorems were proved by S. Matveev and
independently by R. Piergallini .

Theorem 5.1 Let P be homeomorphic to a special spine of a 3-manifold M;
let Q be a special polyhedron. Then Q also is homeomorphic to a special spine
of M if and only if P transforms to Q by a sequence of the moves Tl 1, T21

Theorem 5.2 A special polyhedron P 3-deforms to a special polyhedron Q if
and only if P transforms to Q by a sequence of the moves T; l ,1 < i < 3.

For the proofs see [Ma871i Ma872, Pi88].

One can easily prove that if a special polyhedron has at least two vertices,
then every T1 -move on it can be expressed through moves T2 1. Hence, with
a few exceptions, we need only one type of moves in Theorem 5.1 and two
types of moves in Theorem 5.2.

5.2 An equivalence of (Z) for special spines and (P)

In 1983, D. Giliman and D. Rolfsen advanced the investigation of (Z) by
proving the following theorem.

Theorem 5.3 If P is a special spine of a homology 3-ball M, then P x I
collapses to a subset homeomorphic with M.

We shall say that a topological space X is acyclic if Hi (X; Z) = 0 for all i > 0.
Actually the original proof of Theorem 5.3 (see [GiRo83]) is valid for every
acyclic spine P C M having a false surface structure. We prefer to propose
here another proof. It follows immediately from Lemmas 5.4-5.6 below and
gives, by the way, the same embedding of M into P x I.

Let P be a fake surface such that all 2-components of P are orientable. Define
an orientation of P to be a collection of orientations of its 2-components such
that the following condition holds:

on every edge of P two of the three induced orientations are opposite to
the third.

The notion of orientability for fake surfaces was introduced in [GiRo9l]. We
would like to point out that an orientable 3-manifold can have a non-orientable
special spine as well as an orientable special polyhedron can serve as a special
spine of a non-orientable 3-manifold.
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Figure XI.12.

Lemma 5.4 Every acyclic fake surface P is orientable.

Proof: Since S(P) is a graph with vertices of order 2 and 4, there exist a
1-cycle y E Ci(S(P);Z) all of whose coefficients are ±1. By the acyclity
there exist a 2-chain 0 E C2(S(P); Z) with O,0 = y. Consider the union E of
2-simplices on which 3 has even coefficients. One checks that E is a closed
surface, using the fact that if three integer numbers add to ±1, then either
two or none of them are even. But since P is 2-dimensional and acyclic,
we conclude that E is actually empty. In particular, ,0 has odd coefficients
for all 2-simplices of P. The orientation a is obtained now by reversing the
orientations of all 2-simplices with negative coefficients (since if three odd
numbers add to f1, then they can not have the same sign). 0

We shall think of the polyhedron El (a typical neighbourhood of a vertex
in a special polyhedron) as comprised of a vertex, four edges and six 2-cells.
Although El is not a special polyhedron (it has a boundary), it makes sense
to consider orientations of El as collections of orientations of 2-cells such that,
for every edge, two of the three induced orientations are opposite to the third.

Exercise For every two orientations a unique homeo-
morphism h : El -+ El, up to isotopy, transforming a to Q.

Hint We present El as a cone over a one-dimensional skeleton of a regular
tetrahedron and use the large symmetric group of the tetrahedron to match
a with 0.

We turn our attention to the notion of branched surface [FlOe84].

Definition A branched surface F is a space locally modelled on the space
El' shown on Figure 12.

The branched surfaces that we use are mainly embedded in 3-manifolds. It
should be pointed out that we have in mind the smooth category now; the
upper and lower sheets of Ei have to be tangent (pinched) to the middle
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square, and the placement of Ei in R3 shown on Figure 12 describes the
behavior of F inside a 3-manifold up to a diffeomorphism.

Each branched surface is (homeomorphic to) a fake surface, but not every fake
surface has a branched surface structure. For example, let L be the simplest
spine of the lens space L3,1, that is, a disc D2 with identifications by the free
action of the group 7L3 on 8D2. Then L can not be realized as a branched
surface.

An orientation of a branched surface F is an orientation of the underlying
fake surface such that the following condition (*) holds:

(*) for every pair of 2-components adjacent to an edge e of F, the induced
orientations of e coincide if and only if the 2-components are pinched
together along e.

The model branched surface Ei has two orientations. They are induced from
two possible orientations of a plane by orthogonal projection of El into the
supporting plane of the middle square. Fix an orientation ao of El .

Lemma 5.5 If a special polyhedron P is orientable, then P has an oriented
branched surface structure.

Proof: Let N(S(P), P) be a small regular neighbourhood in P of the sin-
gular graph S(P). Decompose it into a union of homeomorphic copies Ai,
1 < i < n, of El such that the intersection of each two copies is either
empty or consists of Y-shaped graphs (a Y-shaped graph is a wedge of three
segments). By assumption we are given an orientation a of P. For each
i, 1 < i < n, a restricts to an orientation ai of Ai . We use the above
exercise to construct a homeomorphism (called a chart) cpi : Ei -+ Ai send-
ing ao to ai. The charts (pi determine branched surface structures on all of
Ai. Hence for each Y-shaped graph Y we had used for cutting we have two
pinchings coming from both sides of Y. In view of condition (*) and com-
patibility of ai these two pinchings coincide. Therefore, we can extend the
branched surface structures on Aito an oriented branched surface structure
on N(S(P), P) and then on P .

Lemma 5.6 Let a special spine P of an orientable 3-manifold M with bound-
ary admit an oriented branched surface structure. Then P x I collapses to a
subset homeomorphic with M.
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Proof: Realize P as a branched surface in M and identify M with a regular
neighbourhood of P . Then M can be decomposed into segments with end-
points on OM. The behavior of the decomposition (denote the decomposition
by 1; ) in a neighbourhood N of a vertex is shown on Figure 13. The decom-
position space M/t; can be identified with P. The embedding of M into P x I
that we have to construct will have the form cp = it x p : M -* (M/ f) x I where
it : M -+ M/i; is the decomposition projection and p : M -> I maps each
segment of the decomposition into a subsegment of I linearly. For a neigh-
bourhood N of every vertex, we define PIN to be the orthogonal projection
onto I , see Figure 13. The orientability assumptions allow us to extend the
projections to a map p : M -4 I such that cp = it x p is an embedding. Since
the intersection of V(M) with every segment {*} x I is connected, x I
collapses to V(M) . 0

III

L, ID I I

I I HI 1 l

Figure XI.13.

Let us state now two important consequences of Theorem 5.3.

Corollary 5.7 (Z) is true for all special spines of a 3-ball.

Corollary 5.8 (Z), restricted to special spines (of 3-manifolds) , is equivalent
to the Poincare Conjecture (P).

The proofs of both corollaries are easy, since if P is a special spine of a 3-ball
B, then P x I \, B \, {*}. For the implication (Z) * (P); see Chapter I,
§4.2.

Remark: Let P be a special spine of a (not necessarily orientable) 3-
manifold M. Every open 2-component C2 of p2 has the normal line bundle
and every open edge e of P has the normal disc bundle. By a normal orien-
tation of C2 or e in M we mean an orientation of the corresponding normal
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bundle. If C2 is adjacent to e, then a normal orientation of C2 induces a
well-defined normal orientation of e. Define a normal orientation of P to be
a collection of normal orientations of its 2-components such that the following
holds: for every edge e in P two of the induced normal orientations are op-
posite to the third. Certainly, every orientable special spine in an orientable
3-manifold is normally orientable. A careful analysis of the proof of Lemma
5.6 shows that actually we need only the existence of a normal orientation. In
other words, the conclusion of Lemma 5.6 holds for every normally orientable
special spine.

5.3 An equivalence of (Z) for unthickenable special
polyhedra and (AC)

This section consists mainly in application of Theorems 5.1 and 5.2 to an
investigation of (Z). Let a special polyhedron Q2 be obtained from a special
polyhedron p2 by one of the moves T1,1 < i < 3. The question is whether
the 1-collapsibility of p2 implies the 1-collapsibility of Q2. It turns out that
the answer is Yes for all 7 1 with one exception: if p2 is transformed to Q2
by the move Ti -1 and Q2 is a spine, then we can say nothing. Nevertheless,
an unexpected result of S. Matveev (see Theorem 5.15 below) allows one to
prove the equivalence stated in the title.

A spacious property for special spines

At first we prove that the 1-collapsibility of a special polyhedron is preserved
under applying the moves T1 1, T2 1

Theorem 5.9 ([Ma871]) Suppose a special polyhedron Q is obtained from a
special polyhedron P by a sequence of the moves T1'11, T2 1. Then there is an
embedding b:PxI -*QxI such that

It follows from Theorems 5.1 and 5.9 that every special spine Q of a 3-manifold
M has the following spacious property: for every special spine P C M a
homeomorphic copy of P x I lies in Q x I such that Q x I \, P x I.

It is certainly sufficient to prove Theorem 5.9 for the case when Q is obtained
from P by one of the moves T1'11, T2 1. Let us recall the definitions of the
moves Tj 1, T2 in a slightly different form, and introduce two additional moves
To,Ti1 (see Figure 14). Each move removes a fragment F, and replaces it by
the fragment F. The remaining part of the transformed special polyhedron
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is understood to be fixed. We define the boundary of a fragment to be the
union of its closed free edges. Clearly, aF = aF' for all i, 0 < i < 3.

To3
T1-1

10

T2

30

T1-1

Figure XI.14.

Lemma 5.10 For every i, 0 < i < 3, there exists an embedding L, : F, x I -*
F,' x I such that bi, = Id on a neighbourhood of aF x I, and F' x I \, i,(F1 x I).

Proof: It is convenient to consider F, 0 < i < 3, as the horizontal standard
disc D2 with the additional part X, = Cl(F, - D2) attached to it along
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Y = D2 n X,. Similarly, present F' as F,' = D2 U X, where Xi' = Cl (F,' - D2)
and Y'=D2nX;.

Let us modify the identity embedding of the disc D2 x {0} into D2 x I on a
smaller round disc Do x {0} C Int (D2 x {0}) by taking the center of D2 x {0}
into a point (xo,1/2) and using a conical construction to get an embedding
cpl : D2 x {0} -+ D2 X I. The point xo must lie outside Do; see Figure 15.

Figure XI.15.

Since cp1(D2 x {0} lies in D2 X I with a collar, one can extend co to an
embedding cp : D2 X I -3 D2 x I such that cp = Id on a neighbourhood
of aD2 x {0}. Let us choose the collar and the attaching graphs Y,Y' in
such a fashion that pc (1, x I) = Y' where p is the direct product projection.
To be more precise, take Yo, Y2 and Y1, Y3 as shown on Figure 16; the exact
placements of Yo, 12 and Y1, Y3 can be found from the condition pcp(Y) = Y'.
Extend the embedding cp to Xi x I by taking it into Xi x I. The embedding
7pi : F, x I -> F' x I so obtained is the one desired. The visualization of the
collapse is left to the reader.

Proof of Theorem 5.9: Let Q be obtained from P by one of the moves
To, Ti 1, T2, Ti 1. For a suitable i, 0 < i < 3, define an embedding 0 : P x
I -4 Q x I taking z/i = Id outside F, x I and % _ 7pi on F, x I, where
Oi F1 x I -+ x I is the embedding described in Lemma 5.10. Clearly
Q x I \, 7,1(P x I). It remains to note that the move T1 is a special case of
the move To and that the move T2 1 is a composition of T2 and Ti 1

Corollary 5.11 The property of a special polyhedron to be 1-collapsible is
preserved under the moves Ti 1 and T2 1

Proof: If P2 X I ,, {*} and p2 transforms to Q2 by a sequence of the moves
Tit, T21,then Q2xI\'O(P2xI)N{*}.
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Figure XI.16.

The following corollary generalizes Theorem 5.3.

Corollary 5.12 If Q is a special spine of a 3-manifold M with boundary,
then Q x I collapses to a subpolyhedron homeomorphic with M.

Proof: One can easily show that every 3-manifold M has a normally ori-
entable special spine P . Actually the special spine constructed in [GiRo9l]
is normally orientable. It follows from the remark to Lemma 5.6 that P x I \'
M. Since QxI\, PxIby Theorem 5.9,we have QxI\M.
Remark Let L denote the 2-complex associated with the group presentation
< a I a3 >. Then L is a fake surface and L is a spine of the punctured
lens space L(3,1).. Nevertheless L x I can not be collapsed to a subset
homeomorphic with L(3,1).; see [Gi86]. This does not contradict the above;
L is not a special spine because it has no vertices.

1-Collapsibility of unthickenable special polyhedra

A special polyhedron P is called unthickenable if it can not be embedded
in a 3-manifold. We know from Theorem 5.2 that every 3-deformation of
one special polyhedron to another can be replaced by a sequence of moves
Ti}11 1 < i < 3. The move T3 transforms every special polyhedron to an
unthickenable one. Our aim now is to clarify how T3 affects the 1-collapsibility.
At first we prove a more general theorem than is required for the purpose.
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Theorem 5.13 Let Y be a collapsible subpolyhedron of a polyhedron X. If
(X/Y) x I \, {*}, then X x I \, {*}.

Proof: Let y E Z = X/Y be the point corresponding to Y. Since Z x I \'
{*}, there is a collapsible triangulation K of Z x I such that y x I is the
underlying space of a subcomplex J C K. The triangulation K may be
chosen so that S =I St(J", K") I has a form S = N1 x I C Z x I, where N1 is
a regular neighbourhood of y in Z. Let G =Cl(Z x I - S). Denote by by N2
a regular neighbourhood of Y in X. Identify ON1 = N1 n Cl(Z - N1) with
aN2 = N2 n Cl(X - N2).

For every vertex v E J' the pairs (I St(v, K") St(v, K") I nG) and
(N1 x I,,, ON1 x I =I St(v, J") I. Hence there
exist a homeomorphism h : (N1 x I, aN1 x I) -* (S, S n G) such that

h(0N1 x I nG

for every vertex v E X. It is clear that Z x I = G U,. (N1 x I) and that
X x I is homeomorphic to the polyhedron W = G U,. (N2 x I), where r is the
restriction of h onto aN1 x I = ON2 x I; see Figure 17.

N2 X I

G

Y

G

ZxI

Figure XI.17.

G G

Y
W=XxI

For every subcomplex L C K define a subpolyhedron W (L) C W by the
formula

W (L) = (I L I nG) U,. (N2xI St(L" n J", J") 1) -

Using the collapsibility of Y, one can easily verify that if K \\,S L, then
W(K) \, W (L) . To be more precise, each elementary simplicial collapse
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L \, Ll = L - (o U 6) can be followed by a collapse of W(L) onto W(L1).
It is evident if the free face 5 of or is not contained in J, and for the case
8 E J; see Figure 18, where the case v = L is shown. It remains to note that
W(K)=W::: XxIandW(*)\, {*}.

S

Figure XI.18.

L1

Corollary 5.14 Let a special polyhedron Q be obtained from a special poly-
hedron P by the move T3. If P x I \, {*}, then Q x I \, {*}.

Proof: Let E5 C Q be a fragment appeared under the move T3. Since
Q/E5 = P and P x I \, {*}, it follows from Theorem 5.13 that Q x I , {*}

We do not know whether the same result holds for the move T3 1. But the
following remarkable theorem allows one to overcome this difficulty.

Theorem 5.15 Let a special polyhedron P 3-deform to an unthickenable spe-
cial polyhedron Q. Then one can pass from P to Q by a sequence of the moves
Ti 1, TT 1 and T3 (that is, without using T1).

For the proof, see [Ma872].

Corollary 5.16 (Z) is true for all unthickenable special polyhedra that can
be 3-deformed to a point.
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Proof: Suppose an unthickenable special polyhedron Q can be 3-deformed
to a point. Then Bing's house B can be 3-deformed to Q. It follows from
Theorem 5.15 that one can pass from B to Q by a sequence of moves Ti1, T2 1
and T3. By Theorem 5.9 and Corollary 5.14, these moves preserve the 1-
collapsibility. Since B x I \, {*}, we have Q x I \, {*}. o

Corollary 5.17 (Z) restricted to unthickenable special polyhedra is equivalent
to (AC).

Proof: (AC) implies (Z) for unthickenable special polyhedra by Corollary
5.16. The inverse implication follows from [Wr73]; see also Chapter I, Re-
marks 1,2 to Theorem 3.1.

Combining Corollaries 5.8 and 5.17, we have

Theorem 5.18 ([Ma872]) (Z) restricted to special polyhedra is equivalent to
the union of (P) and (AC).

Theorem 5.18 may bring some doubt to the common belief (Z) is false.

6 Generalizing (Z) to Higher Dimensions

Let us reformulate (Z) as follows: the direct product of a contractible 2-di-
mensional polyhedron and the 1-dimensional cube is collapsible. There are
two ways for generalizing (Z) to higher dimensions: one may increase the
dimension of the ball, and one may increase the dimension of the polyhedron.
Let us consider the first possibility.

6.1 n-Collapsing

Definition A compact polyhedron P is called n-collapsible if P x I" \, {*}.

Theorem 6.1 ([Di68, Li70]) Every contractible polyhedron is n-collapsible
for some n.

Proof: According to [Wh39], there is a finite sequence of elementary expan-
sions transforming P to a collapsible polyhedron. The collapsing by adding a
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cell method (section 3.1 ) allows one to shorten the sequence at the expense
of multiplying it by I.

There arises a natural question concerning an estimate for the number n.
The proof of Theorem 6.1 does not give a uniform upper bound, since the
number of elementary expansions can be arbitrarily large. First results in
this direction were obtained by M. Cohen [Co75].

Theorem 6.2 Let P be a spine of a PL manifold M with boundary (M.
Then Px Cone(OM) collapses to a subset PL homeomorphic with M.

Proof: One can identify M with the mapping cylinder M f of a map f : OM -*
P. Present Mf and Cone((M) x P as quotient spaces of (aM x I) U P and
aM x I x P, respectively. Then the rule (x, t) -+ (x, t, f (x)) for (x, t) E
aM x I determines an embedding 2/i : Mf --Cone(8M) x P. Starting from
aM x {0} x P, we collapse Cone(aM) x P onto O(M1) M along line
segments of the form (x, t, y) C Cone((M) x P, 0 < t < 1. Certainly a little
care is needed to be sure that the collapse is PL.

Corollary 6.3 Every spine P of a n-ball B" is n-collapsible.

Proof: P x B" Cone(OB") x P \, B" \, {*}.

Corollary 6.4 Every compact contractible n-dimensional polyhedron P" is
m-collapsible, where m = 6 for n = 2 and m = 2n for n > 3.

Proof: Embed P" in R" (see, for example, [Fe70]) and consider a regular
neighbourhood N of P" . The higher dimensional Poincare Conjecture implies
that N is an m-ball. By Corollary 6.3, P" is m-collapsible.

From Corollary 6.3, we know that every spine of the 3-ball is 3-collapsible.
R. Edwards and D. Gillman have improved this result by one [EdGi83].

Theorem 6.5 Every spine of the 3-ball is 2-collapsible.
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6.2 Disproving (Z) for higher dimensional polyhedra

The first counterexample to higher dimensional (Z) was exhibited by M. Co-
hen [Co77]. His paper is based on Rothaus' result concerning the existence
of Whitehead torsion values which cannot be realized by two-dimensional
additions to a complex (see [Rot77] and Chapter I, §4.4) and a principle of
stopping collapses at regular neighbourhoods of subpolyhedra that generalizes
the one of the proof of Theorem 3.2 (compare Chapter I, (54)).

Theorem 6.6 For every n > 3 there exists a contractible n-dimensional poly-
hedron P" such that P" X I is not collapsible.

Now the existence of rather nice 3-dimensional counterexamples is known.
Consider the 2-complex P which may be described as the boundary of a
regular dodecahedron, with opposite faces identified under a rotation through
.7r/5 (see Figure VIII.la). P is a (special!) spine of the punctured Poincare
homology sphere. As I. Bernstein, M. Cohen and R. Connelly have shown,
the suspension EP is not 1-collapsible [BeCoCo78], although it is clearly
contractible. Concerning n-collapsibility, they showed that for every integer
n > 1 there exists a contractible polyhedron of dimension n + 4 which is not
n-collapsible. The latter result uses J. W. Cannon's and R. D. Edwards' work
on non-combinatorial triangulations of spheres.

Recently, J. Bracho and L. Montejano [BrMo9l] have constructed (n + 1)-
dimensional polyhedra A"+1 of the (simple-) homotopy type of S1 such that
A"+1 x I9 collapses to S1 if q > n. In contrast to the previous result, the
noncollapsibility part of their theorem does not depend on the PL-structure
but is related to the Ljusternik-Schnirelman category.

7 Open Problems

1 Does there exist a presentation < at,... , a" I R1,. .. , R" > such that
the reduced words R1, ... , R. form a basis in F(a,, . . . , a") but the 2-
complex associated with the presentation is not prismatically collapsi-
ble?

2 Let a special polyhedron Q be obtained from a special polyhedron P by
applying the move T5 shown on Figure VIII.11. Does the 1-collapsibility
of Q imply the 1-collapsibility of P?

If Yes then it follows from Corollary 5.16 that the Poincare conjecture
is true in the following weakened (and natural!) form: every 3-manifold
that 3-deforms to a point is a genuine 3-cell.
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3 Does (Z) hold for higher-dimensional polyhedra having a nice local
structure? As a candidate for polyhedra having a nice local structure
one may take higher-dimensional special polyhedra; see [Ma73].

4 Are all K(p, q, r, s) 1-collapsible (see [Li73])? It is known that every
K(p, q, r, s) is a spine of a 3-ball (see §3.3).

5 Denote by Y,, the wedge of n segments. Is it true that for every con-
tractible 2-dimensional polyhedron P2 there is an integer n such that
p2 X Y, \, {*}? This would imply that P is 2-collapsible (compare
Theorem 6.5).

6 Two special polyhedra P and Q are said to be T-equivalent, if there is a
sequence of moves Tl r, T2 r transforming P to Q. Define an imaginary
3-manifold to be a T-equivalence class of special polyhedra (Motiva-
tion: Theorem 5.1). The notion of singular 3-manifolds introduced by
F. Quinn [Qu81] (see Chapter VIII, §2) can be considered as a geomet-
rical realization of an imaginary 3-manifold.

Try to develop a theory of imaginary 3-manifolds.

7 Investigate the following generalization of (Z): If K2 is homotopically
equivalent to S1 , then K2 X I \ S1 (The analogue to Theorem 6.6 for
this situation has been proved in [BrMo9l], compare §6.2). It is sensible
also to replace S1 by a wedge of circles and/or 2-spheres.

8 (D. Gillman) Conjecture If P2 is a fake surface and P2 X I is collapsible,
then Punctured Real Projective 3-space does not embed in p2 X I.

This conjecture fails without the first hypothesis by a theorem of Zhong-
mou Li [Li93]. It fails without the second hypothesis by a theorem of
[Ma871]. The conjecture may be strengthened by replacing collapsible
with contractible, or by replacing Real Projective 3-space by any non-
trivial lens space.



Chapter XII

The Andrews-Curtis
Conjecture and its
Generalizations

Cynthia Hog-Angeloni and Wolfgang Metzler

1 Introduction

For the following survey on the (generalized) Andrews-Curtis problem we
assume that the reader is familiar with relevant material from previous chap-
ters. In particular, we refer to Chapter I, § 4.1 for the origin of (ACO) and to
Chapters X and XI for relations to (Z(')) resp. to the Whitehead asphericity
conjecture. Throughout this chapter all complexes will be compact, con-
nected, and all presentations will be finite. Because of Chapter I, Theorem
2.4 we may speak interchangeably of 3-deformations and of Q**-equivalences,
according to the specific context.

1.1 Some balanced presentations of the trivial group

A Q**-trivialization of a finite presentation P is a Q**-transformation of P
into a presentation of type (al, ... , a9I al, ... , a9); Q*- and Q-trivializations
are defined analogously. No Q**-trivialization is known for the following ex-
amples, although these balanced presentations can be shown to define the
trivial group:

(1) a) (a, b, clc 'bc = b2, a-1ca = c2, b'1ab = a2), see Rapaport [Ra682];

365
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b) (a, b1ba2b-1 = a3, ab2a-1 = b3), see Crowell-Fox [CrFo63], p. 41;

c) (a, baba = bab, a4 = b5), see Akbulut Kirby [AkKi85].

They serve as potential counterexamples to disprove (AC).

We add some comments and facts about these examples:

Example a) belongs to a series of presentations with n generators a, and
cyclically indexed defining relations a=+la=ai+1 = a? which, for n > 4 present
nontrivial infinite groups (see B.H. Neumann in Kurosch [Ku53], p. 376). For
n = 2, the presentation can easily be trivialized by a Q-transformation.

Each of the relators in Example b) defines a one-relator, non-hopfian group,
(see Lyndon Schupp [LySc77], p. 197). If in b) one relator is replaced by
any other such that the resulting group 7r is perfect, then 7r = Ill still holds.
Moreover, the exponents 2 and 3 in the remaining relator may be replaced
by n and n + 1 without loosing the triviality of 7r, Miller Schupp [MiSc79].

Example c) corresponds to a handle decomposition of the Akbulut-Kirby 4-
sphere [AkKi85] which was later shown to be smoothly standard by Gompf
[Go91]. The presentations (a, baba = bab, a" = b"+1) all yield the trivial
group. For n > 3 it is unknown whether they are Q**-trivial, which is the
case for n = 2, see Gersten [Ge882].

2 Strategies and Characterizations

2.1 Considerations on Length

The early works on (AC) contribute to the question whether there exists some
analogy between Nielsen's or Whitehead's algorithm for free groups (Lyndon
Schupp [LySc77], Chapter 1) and the problem of finding a Q**-trivialization
for a given balanced presentation of Tr = {1}. Rapaport [Ra681] yields a neg-
ative answer to certain expectations of Andrews Curtis [AnCu66]. Theorem 6
of her paper contains a (sub-)family of presentations, for which the "obvious"
Q-trivializations by chains of elementary transformations pass through inter-
mediate stages, where the sum of the lengths of (cyclically reduced) defining
relators is bigger than in the beginning and in the end'. In fact, the height
of these "mountains" depends exponentially on a parameter of the family,
and no competing trivializations seem to be known that do better. But in
Rapaport's examples this phenomenon can be bypassed by lumping together

'Compare the discussion after Theorem 3.4 below.
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consecutive changes of one defining relator Rj to a new type of elementary
Q-transformation, namely

(2) R; -* wRt1w-1 S, where S is a consequence of the remaining relators.

Gersten [Ge882] has taken up Rapaport's discussion and, with the use of a
slightly modified basic terminology which involves the notion of "pieces" of
small cancellation theory and, in particular, takes care of (2), was able to
exhibit weakly monotonous Q**-trivializations for "all Andrews-Curtis trivi-
alizable presentations known to the author". Moreover he proved that such
a "direct path" in his sense does not exist for Example (1)a) above.

As a comment in ([Ra682], p. 149) shows, Rapaport herself was hesitant to
allow (2) as an elementary move: in general, length reduction by (2) embodies
a decision problem which may already be unsolvable in the restricted case of
balanced presentations of 7r = 111. At least, when passing to non-balanced
presentations and omitting explicit knowledge on ir, the danger of "trying to
solve" an unsolvable decision problem becomes apparent:

(3) The presentations P = (al, ... , a9JR1...., Rh,, 1, ... ,1)
and Q = (a,,...,a9l1,...,1, a,,...,a9)

with equal number of defining relators are Q- resp. Q*- resp. Q**_
equivalent if (al, ... , a9IR1, ... , Rh) is a presentation of it = {1}.

Example (1)a) can be Q**-transformed into a presentation with 2 generators
and 2 relators, (see [Ra682], p. 141). Such a "reduction" will in general
lead to a considerable increase of lengths of the remaining relators. Thus
it may be worth while to "simplify" a presentation in the other direction:
Passing to a triangulation of its standard complex, a given presentation can
be Q**-transformed until

(4) all relators are of length of at most 3.

Furthermore, it can be shown that a 3-deformation between two finite, simpli-
cial 2-complexes gives rise to a chain of simplicial expansions and collapses of
dim. < 3 in which the 3-dimensional moves are transient, compare [KrMe83]
and Chapter I, § 2.3. These immediately translate into a list of generating
Q**-moves such that (4) holds throughout the transformation. Keeping in
mind the simplicial steps, it is possible to give a purely algebraic argument
that this list generates all Q**-equivalences between presentations of type (4)
(Exercise).
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A dual property may be achieved by shifting complexes and 3-deformations
into general position, compare Chapter I, § 3.1 and Chapter XI, § 5: One may
state (AC') in terms of presentations and (new) elementary Q**-transformations
such that

(5) each generator (including its inverse) occurs altogether at most three
times in the defining relators.

2.2 Algebraic aspects

Let P = (a1,. .. , aglR1,... , Rh) and Q = (a1, ... , aglS1,... , Sh) be presen-
tations with equal relator subgroups N = N(R;) = N(S,) C F(ai); in par-
ticular, P and Q present the same group it = F(ai)/N. In order to obtain
criteria whether P and Q are Q-equivalent, we take up notions and results
from Chapter II:

To P we associate a (bigger) free group F(ai, rj), i = 1, ... , g, j = 1,. .. , h
and a projection p : F(ai, rj) -+ F(ai) given by ai -4 ai, rj -4 R;. Let E(P)
be the normal closure of the ri in F(ai, rj). F(ai) operates on E(P) and on
N by conjugation; p induces an F(ai)-equivariant surjection ap : E(P) --+ N.
The kernel of Op is the group I (P) of identities of P. It contains the Peiffer
elements (r, s) = r s r-1 CJ9p(r)s'10Op(r)-1, r, s E E(P) and their normal2
closure the Peiffer group P(P). The corresponding data for Q are constructed
and denoted in analogy to those for P.

That the relators of P are consequences of those of Q, can be expressed as
follows: There exists an F(ai)-equivariant homomorphism cp : E(P) -+ E(Q)
leading to a commutative diagram

(6)

E(P) E(Q)

ac Z aQ
N

We call such a homomorphism cp a presentation morphism; the usual wording
on composition of morphisms and on isomorphisms can be made here.

Expressing the defining relators of P in different ways as consequences of the
S,, yields morphisms cp, 0 which differ by identities of Q, and vice versa.

With this terminology we have

IThe group generated by the (r, s) is normal (Exercise).
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Lemma 2.1 P = (a,,...,aglRi,...,Rh) and Q = (a1,...,a9JS1,...,Sh)
with N = N(R3) = N(S1) are Q-equivalent if there exists a presentation
isomorphism cp : E(P) -+ E(Q).

Proof: Elementary Q-transformations (conjugation, inversion, multiplica-
tion) immediately give rise to presentation isomorphisms; hence a Q-equiva-
lence yields an isomorphism V. Conversely, if c p : E(P) -+ E(Q) is a presen-
tation isomorphism, then the F(at) -conjugates of the r 1 . . . . . rh and of the
cp-1(sl), ... , yrl'1(sh) are both (ordinary) bases of E(P). The "Nielsen the-
orem for free groups with operators" (see the references given in Chapter I.
§ 4.1) yields that the rj can then be converted into the V-1(sj) by a sequence
of a) free transformations and b) conjugations by elements of F(at). They
result in a Q-transformation P -- Q, as desired.

A presentation morphism cp : E(P) -) E(Q) yields a continuous map K-p -a
KQ which is the identity on the 1-skeleta; furthermore I (P) and P(P) are sent
to the corresponding groups associated to Q. These maps give rise to a char-
acterization of Q-equivalence which can be related to geometric arguments of
previous chapters:

Theorem 2.2 ([Me791]) Two presentations P = (a,_., a9IR1, ... , Rh) and
Q = (al, ... , a9IS1i ... , Sh) with N = N(Rj) = N(S3) are Q-equivalent iff
there exists a presentation morphism y : E(P) --* E(Q) that induces a ho-
motopy equivalence K-p -* KQ and an isomorphism P(P) -+ P(Q).

Proof: If P and Q are Q-equivalent, then, by the preceding lennna, there
is an isomorphism p : E(P) --> E(Q). This induces isomorphisnis I(P) -*
I(Q), P(P) -> P(Q), hence an isomorphism from r2(Kp) I(P)/P(P) to
7r2(KQ) I(Q)/P(Q) (see Chapter II, Theorem 2.7). As the fundamental
groups are also mapped isomorphically onto each other, Whitehead's theorem
(Chapter II, Theorem 2.11) yields that V induces a homotopy equivalence
K-p -+ KQ.

Conversely, if cp induces an isomorphism P(P) -> P(Q) and an isomorphism
I(P)/P(P) -+ I(Q)/P(Q), then cp also induces an isomorphism I(P) -*
I(Q). By the commutativity of (6), cp maps E(P)/I(P) isomorphically to
E(Q)/I(Q); together with I(P) -4 I(Q) we get that (p : E(P) E(Q)
is an isomorphism itself which, by the preceding lemma, gives rise to a Q-
transformation P -* Q.

Q*- and Q**-transformations can be covered by an extended concept, compare
[Me791). This paper also contains a discussion of special cases (e.g. balanced
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presentations of the trivial group), and derives tests which result from the
above classification (e.g. via Fox calculus). In contrast to Theorem 2.2, which
can be interpreted as measuring the "gap" between homotopy type and Q-
equivalence, the following considerations focus on an algebraic description of
the potential difference between simple-homotopy of 2-complexes and Q**-
equivalence. Again we assume that P = (a1i ... , agjR1,... , Rh) and Q =
(a1i ... , aglSl,... , Sh) fulfill N(Rj) = N(Sj) (= N). If, in addition,

(7) all R;SI 1 are contained in the commutator subgroup NM = [N, N],
then KP and KQ are simple-homotopy equivalent.

This holds because we then get a chain equivalence of equivariant chain com-
plexes where all chain groups are mapped by identity matrices: a commutator
of relators contributes the trivial (equivariant) 2-chain to such a map.

But there is a converse to this fact:

Theorem 2.3 ([Qu85], [Ho-AnMe90]) If K2 and L2 are compact,
connected CW complexes that are simple-homotopy equivalent, then
these complexes can be 3-deformed until corresponding presentations
P = (a1, ... , a9IR1, ... , Rh) and Q = (a1, ... , agjS1,... , Sh) are achieved
which fulfill N = N(Rj) = N(Sj) and RjSi 1 E NO).

Quinn [Qu85] relates the statement to 4-dimensional handlebody theory and
derives an elementary simple-homotopy move for 2-complexes which helps to
interpret a 4-deformation. We sketch the (algebraic)

Proof given in [Ho-AnMe90]: K2 and L2 can be 3-deformed until P and
Q have the same generators, the same number of defining relators, N(Rj) =
N(Sj) holds, and the given simple-homotopy equivalence maps all equivariant
chain groups (with bases given by the cells) by identity matrices. In partic-
ular, the Rj resp. Sj give rise to fundamental systems Rj resp. Sj of 2-cells
such that

(8) Rj is mapped to Sj for each j.

This corresponds to a presentation morphism cp : E(P) -; E(Q), such that

(9) the cp(rj)sj 1 are contained in the kernel of the natural map OQ : E(Q) -*

C2(KQ).
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But by Reidemeister [Re49] (compare also Chapter II, Lemma 2.4), ker 9Q is
normally generated by commutators and Peiffer identities . As the latter are
trivialized under aQ : E(Q) -4 N, we get that 8Q(c (rj))s,-1 = R;S; 1 is a
product of commutators of N.

Because of Theorem 2.3, (7) can be considered as the essential principle in
constructing potential counterexamples to (AC'). But potential invariants
to disprove (AC') can be pushed up to arbitrarily high commutators (unlike
those for distinctions in Chapters III and VII):

Theorem 2.4 ([Ho-AnMe9l]) If P = (a1, ... , a9I R1, ... , Rh) and
Q = (a1, ... , a9IS1, ... , Sh) fulfill N = N(Rj) = N(S,) and if R;S.7 1 E N(1)
is true, then for each n E IN there exists a Q-transformation P -> P' =
(a1, ... , ajRl,... , Rh) such that RjS 1 E N(n) holds for all j. El

Here N(n) denotes the n-th commutator subgroup which is defined induc-
tively by N(°) = N and N(n) _ [N(n-1), N(n-1)]. The (AC)-case of Theorem
2.4 is due to W. Browning [Br762]. We relate Theorem 2.4 to presentation
morphisms and identities:

Let P = (a1,...,a9IR1,...,Rh) and Q = (a1,...,aglS1,...,Sh) fulfill N =
N(R3) = N(S,) and R;SI 1 E N(n). Then there exist presentation morphisms
yo: E(P) -> E(Q), 0: E(Q) -> E(P) with O(p(r) r-1 E I(P) fl E(n)(P) for
all r E E(P), E I(Q)flE(n)(Q) for all s E E(Q). These deviations
from the identity are contained in subgroups which can be rewritten as follows:

By Reidemeister's main step of the proof in [Re49], the property

(10) I fl [E, E] = [I, E] holds for every presentation,

compare the proof of Lemma 2.4 in Chapter II.But the general argument' of
[Re49] directly covers the fact

(11) I fl [W, w] = [I fW,W] for every F(a;)-invariant subgroup W C E.

Thus we get

I fl E(n) = (in E(n-1) E(n-1)] = [[In E(n-2), E(n-2)], [E(n-2), E(n-2)])

3Reidemeister's proof is given for pre-crossed modules C -e} G which have a section
H : 8C -+ C. Such a section - which is not assumed to be G-equivariant - exists in the
case of a free group G = F(a;), hence also for the restricted pre-crossed module W - G.



372 Hog-Angeloni/Metzler : ANDREWS-CURTIS CONJECTURE

i.e. the elements of I fl E() can inductively be expressed as products of n - th
commutators of E such that one innermost bracket of each factor is of the
type [u, v]}1, u E I. As [u, v] = uvu-lv-' equals the Peiffer element (u, v)
for u E I, [I, E] is contained in P. Similarly, the statement in italics implies
that I fl Ef"> is contained in Pen, where Pm is the m-th term of the Peiffer
central series which has been introduced by H. Baues and D. Conduche,
see [BauCo90], Prop. 2.5, and [Bau91]. This Peiffer central series is defined
inductively by: "P1 = E, Pm is (normally) generated by all (u, v), u E Pi, V E
P3 such that i + j = m" (e.g. P = P2).

Hence cp in particular induces an isomorphism E(P)/P2n (P) - E(Q)/P2n (Q),
the inverse being induced by b.

The Theorems 2.2, 2.3, 2.4 and the above discussion reveal that, by killing
(higher) commutators or (higher) Peiffer elements, essential information to
disprove (AC') may get lost. Instead of passing to such quotients it may be
worth while to use projections into perfect or simple groups.

2.3 Aspects concerning singular 3-manifolds

By the classification of 3-deformations of 2-complexes in terms of singular
3-manifolds and their surgery operations, see Chapter VIII, § 2.1, (AC') can
be rephrased as the expectation that

(12) singular 3-manifolds M13, MZ that are simple-homotopy equivalent can
be transformed into each other4 by a finite sequence of Quinn's surgery
operations (2,0), (0,2), (4,3).

The special case with MZ = D3 is (AC). This motivates the search for crite-
ria which guarantee resp. exclude the possibility to remove all singular points
from an k3 by the operations (2,0), (0,2), (4,3). Of course, 7rl(M3) should
be a 3-manifold group, and the question may be formulated under the restric-
tion that the (simple-)homotopy type of k3 can be realized by a 3-manifold
without singularities (compare Chapter I, (end of)§ 3.1, § 4.1, (61) and (62)).
Singular 3-manifolds also give rise to the question whether manifold duality
can be applied resp. modified in order to distinguish presentation classes.

4up to (p.l.) homeomorphism
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3 Q**- Transformations and Presentations of
Free Products

3.1 Semisplit presentations and nonsplittable homo-
topy types

Given a finite presentation of a free product it = G * H, Grushko's theo-
rem see Stallings [St651] yields sorted generators, i.e. there exists a Q**-
transformation (a free transformation of the generators) such that the re-
sulting generators are partitioned into {a1, b3} where a, resp. b; project to
generators of G resp. H. Each defining relator thereby has become a word in
F(ai, b;) which (is trivial or) decomposes uniquely as a product of reduced seg-
ments alternately being contained in the factors F(ai) and F(b3). (The num-
ber of segments is the length with respect to the free product F(ai) * F(bj)).
It is natural to ask whether there exists a further Q**-transformation which
also splits the relators. This holds if the presentation class fi(P) contains
the spine of a compact, connected 3-manifold. Stallings' proof of Kneser's
conjecture (see Hempel [He76], compare Jaco [Ju86]) then gives rise to the
desired decomposition.

A modification of this proof for singular 3-manifolds still yields:

Theorem 3.1 ([HoLuMe85]) Every presentation class of a finitely presentable
free product it = G * H contains a finite presentation (ai, b3 IRk) such that the
ai resp. b1 project to generators of G resp. H and each defining relator Rk
consists of at most two segments.

In the case of one segment, Rk is a split relator for either G or H; in the
other case Rk 1 = Sk (ai) Tk (bj) holds with Sk = 1 resp. Tk = 1 being a
relation in G resp. H. Note that, in general, both segments are nevertheless
not amongst the defining relators. A presentation of G * H as in Theorem 3.1
will be called semisplit. We give an algebraic proof of this theorem based on
the idea of subdividing the 2-cells which correspond to the defining relators
of a presentation with sorted generators al, ... , a9, b1, ... , b9, (as above), see
[HoLuMe85]:

For a given defining relator, at least one of the segments must map to 1,
say w(ai). If the number of segments is greater than 2, we prolong the pre-
sentation by a new generator bg,+1 for the second factor and the relation
b9'+1 = w(ai) (which consists of 2 segments). In the given relator we can
now replace w by by'+1, yielding a relator with fewer segments. We apply this
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process until every nontrivial defining relator has a number of segments not
exceeding 2. (All steps are Q**-transformations).

But as opposed to the 3-manifold (sub-)case, a presentation class 4) of it =
G * H does not always split as a sum 41 + for appropriate presentation
classes -1)1 of G, 4)2 of H. Examples for this phenomenon can be obtained
by the following principle, compare Chapter I, § 4.4:

(13) Let G and H be finitely presented groups with elements x E G, y E H
of finite relatively prime order. Define G, H to be the quotients of G
resp. H by adding the relations x = 1 resp. y = 1. Then it = G * H
can be presented by forming the "disjoint" union of presentations of
minimal deficiency for G, H, enlarged by the relation x = y.

As a concrete example, consider P = (al, a2, bl, b2Ia2 = 1, ala2aj 1 = a2,
b3 = 1, b1b2bj 1 = b2, a2 = b2). The first and the second relator together im-
ply a2 = 1, the third and the forth b23 = 1. Hence a2 and b2 have coprime
orders which implies a2 = b2 = 1 by the last relator. Now P turns out to
be a semisplit presentation of (Z2 X Z2) * (Z3 X 7L3). But X(Ky) = 2; and
for presentations Pl resp. P2 of G = 7Z2 X Z2 resp. H = Z3 X Z3 we have
that X(Kp,) is at least 2 which yields X(KQ) > 2 + 2 - 1 = 3 for every split
presentation Q of (Z2 X Z2) * (Z3 X Z3). Hence the homotopy type of K9 can-
not be split as a one-point unions KP, V Kp, which implies that P cannot be
Q**-transformed to a split presentation Q. Similar examples, where semisplit
presentations "save" Euler characteristic in comparison with split presenta-
tions, exist for (Z n, x 7L,,,) * (Z,,,2 x Z 2), if the greatest common divisors
fulfill (ml, nl) $ 1 0 (m2i n2) and ((ml, n1), (m2i n2)) = 1, see [HoLuMe85]
and [Ho-An88].

This phenomenon can also be rephrased as follows:

The deficiency' of a finitely presentable group it (i.e. min(# (relators) -#
(generators)), taken over all finite presentations of it) in general is not addi-
tive under the operation of forming the free product of groups.

See Chapter VII, § 3.7 for a criterion that guarantees additivity.

'Because of Chapter I, § 2.3, standard complexes can be replaced in the statement by
arbitrary finite, connected 2-complexes of the corresponding groups.

'Compare Chapter I, footnote 27.



3. Q**-Transformations and Presentations of Free Products 375

3.2 Simple-homotopy type, 3-deformations and semi-
split Q**-transformations

That the (simple-)homotopy theory of 2-complexes with 7r1 a free product
G * H is not merely a "sum" of those of the factors, is also the underlying
expectation of our further research. One may ask, for instance, the (open)
questions?

(14) whether every finite, connected K2 with ir, (K2) = G * H that is homo-
topy equivalent to K91 V Kv2 can also be split up to simple-homotopy
type, i.e. whether K2 KQ, V KQ2 holds for suitable presentations
Pl, Qi resp. P2, Q2 of G resp. H.

and, similarly,

(15) whether a splitting with respect to simple-homotopy type can always
be improved to a splitting by 3-deformations.

Counterexamples to (15) would disprove (AC').

As for sh-type and 3-deformations, we cite and comment on two results, the
proofs of which make use of semisplit presentations of free products (with
several factors):

Theorem 3.2 ([Me90]) Let Ko be a finite, connected CW-complex, let K2,
i = 1, . . . , n be standard complexes of the presentation (a, bj a2 = [a, b] = b4 = 1)
of 7L2 X Z4, let K2 be Ko V K, V ... V Kn2, and let To E Wh(7ri (Ko)) be given.
If n (depending on ro) is big enough, then there exists a CW complex L2 and
a homotopy equivalence f : LTO -4 K2 such that r(f) = To E Wh(irl(K2)) _
Wh(ir,(KK)) holds.

In [Me90] it is shown that LTo /\ , K2 does not always hold, thereby dis-
tinguishing homotopy type and simple homotopy type in dimension 2, see
Chapter VII § 5.6, 5.7, 5.8 for M. Lustig's treatment of this phenomenon.
As the homotopy type of LTO splits (via K2), it may well be that some LTo
don't allow any simple-homotopy splitting (for the given factorization of the
fundamental group), which would imply that (14) has a negative answer.

The main "trick" in the proof of Theorem 3.2 is that the relators of the 7L2xZ4-
factors can be Q-transformed to consist of 2 segments in order also to carry
information on squares and on commutators of a presentation of 7r, (Ko) .

?Compare § 2.3 above.
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By the same idea and by use of Theorem 2.3, it is possible to convert sh-
equivalences into 3-deformations, if additional Z2 X 7L4-factors are admitted:

Theorem 3.3 ([Ho-AnMe90]) Let Ko, L2 be finite, connected CW-complexes
which are simple-homotopy equivalent. Then by forming the one-point unions
K2 = K o V K1 V ... V Kn and L2 = L ,2

where the K?, i = 1,. .. , n are standard complexes of the presentation
(a, b1a2 = [a, b] = b4 = 1) of 7Z2 X Z4, and if n is big enough (depending

on Ko, Lo), K2 and L2 fulfill K2 L2. 0

This theorem covers cases where all complexes which are specified in its for-
mulation live on the level of Xmi,,. In particular, in contrast to the one-point
union with 2-spheres, the assumption Ko / \, L2 cannot generally be weak-
ened to Ko Lo: The examples of [Me90] for L2 K2 which are notTO -
simple-homotopy equivalent remain simple-homotopy distinct after stabiliza-
tion with finitely many 7L2 X 7L4-complexes K?, i = 1,. .. , n as in Theorems
3.2, 3.3. Similarly to Theorem 2.4, Theorem 3.3 prevents from fruitless at-
tempts to obtain (AC')-disproofs: A (potential) invariant which "survives"
the above Z2 X Z4-stabilization is ineffective.

We now turn to our approach of a disproof of (AC'), by summarizing recent
and not yet published work in progress:

A Q"-transformation between two finite, semisplit presentations P, Q of
7r = G * H may pass through intermediate stages with non-sorted genera-
tors; and even if sorted ones are given, the relators may have more than 2
segments. But the property of being semisplit is preserved by the following
Q"-transformations:

(16) a) transformations of type Rk -3 vRk 1v'1 or of type Rk -4 vRkv
wRew-1 resp. wRew-1 vRkv-1, k # e, if the resulting relator also
has at most 2 segments (elementary semisplit Q-transformations),

b) free transformations, prolongations (and their inverses) amongst
generators which project to one factor (G resp. H), and general-
ized prolongations (and their inverses) of type R = a-1 w(bj) resp.
R = such that w is contained in the kernel of F(b;) -* H
resp. F(ai) -+ G, and a resp. b denotes a new generator for the
complementary factor (semisplit generator transformations).
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Finite compositions of these transformations are called semisplit Q**-trans-
formations. Note that (16)a) leads to restrictions for the conjugators v and
w: If, for instance, the initial and the resulting relators have exactly 2 seg-
ments, v±1, w±1 can be assumed to be segments of Rk and Re. The possi-
bilities correspond to the inversion of a G * H-equation Sk(ai) = Tk(b;) to
become ST1 = Tk 1 or to the multiplication of two such equations. This is
a Nielsen-like behaviour of transformations rather than that of a general Q-
transformation.

By a geometric argumentation which uses diagrams, it is possible to prove
that "bad" intermediate stages (as mentioned above) can be avoided:

Theorem 3.4 (Metzler) Let P, Q be finite, semisplit presentations of it =
G * H and let P -+ Q be a Q** -transformation which induces the identity'
map on it. Then there exists a semisplit Q** -transformation from P to Q.

This theorem is the basis of our current work on (AC'): The Nielsen-like
behaviour of semisplit Q-transformations between non-split relators may give
rise to a modification of known tests for Nielsen equivalence in order to show
that certain Q**-equivalences don't exist at all. In particular, we hope to
obtain obstructions against a (total) splitting of 3-deformation types which
allow a splitting with respect to sh-type, i.e. to disprove (AC') via a negative
answer to (15). But one has to take into consideration that - in contrast
to Whitehead's algorithm - peak-reduction cannot generally be achieved for
semisplit Q**- transformations with respect to the number of relators with 2
segments. This is shown by an example due to A. Sieradski [Si77] which is one
case in a Q**-classification of a whole family of presentations. The example
also yields that a factorization of a presentation class of it = G * H with freely
indecomposable G, H, if possible, is in general not unique:

Let Pl resp. Q1 be presentations of 7L5 x Z5 x Z5 given by (a1, a2, a3la5, a5, a3,
[al, a2], [al, a3], [a2, a3]) resp. (al, a2, a3l a5, a2, a3, [a2, a2], [al, a3], [a2,
resp. Q2 are defined as Pl resp. Q1, but with generators b2 instead of the a;.

(17) Pl + P2 can be Q-transformed into Q1 + Q2

'If the automorphism is different from the identity and if G # Z and H 0 Z are freely
indecomposable, then Theorem 3.4 can be extended by use of the elementary automor-
phisms of free products which were obtained by Fouxe-Rabinovitch [Fo-Ra40].
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by the following chain of semisplit Q-transformations:

ai=1 , a2=1 , [a,,a2]=1 , bi=1 , b2=1 , [bl,b2]=1

5 5 5 2
a1 = a2 , a2 = [a,a2]

1

2 3
[al,a2] = 1 ,

b15=12

b15 = [bi, b2]

4. (Q)

bs s s 21 = b2 b2 = [a1, a2]

r,

it it

it if if /I

1

1(7)
it 11 /1 11

if if

11

n

11

[bi,b2]3 = 1

b25 = 1

b2 = [ai, a2] lo

b2=1

2 5 2[bI,b2] = 1 , bl = 1 , [al,a2] = 1

1

,b2]=1 , bi=1 , [ai,a2]=1 , b2=1.ai=1 , a2=1 , [b2

The stages of the transition are given line by line. We have not listed the
relations which contain a3 and b3, as they remain unchanged throughout
the transformation and are not used to modify the others. All transitions
are immediate except for (a), (0), (-y) which are explained (by use of the
commutator identity [x y, z] = xyzy-lx-lz-1 = x[y, z]x-1 [x, z]) as follows:
(a) The first and the second relation (of the line in question) together imply
a1 a2 and [a?, a2] a1; hence modulo these relations we have [al, a2] _
[as, a2] = [ai, a2]3. Similarly, (/3) can be derived from the third and forth
relation. For (-y), we note that the argument for (a) can be applied again
to yield [a2, a2] = a1 [al, a2]a1 1 [al, a2] = al [a1, a2]3ai 1 . [a2l, a2]3 = [a?, a2]6,
whence [a?, a2] has order 5 (modulo the first two relations).
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(Each) Kp, differs from (each) KQ, with respect to homotopy (and homology)
type9, see [Me76], [Si77] and Chapter III, §1. Moreover, Z5 x Z5 x Z5 is freely
indecomposable. This implies the statements in italics which precede (17).

Concrete counterexamples to (15) we expect by a combination of the princi-
ples (7) and (13) above. Already in the case of H = {1} (where the factoriza-
tion of ir = G * H degenerates and the splitting property (15) trivially holds),
such a combination yields presentations for which we don't know whether in
general they are Q**-equivalent:

(18) P = (a,, ... , ag, bi, b2IR1(a;), ... , Rh(a;), 1, bib25, bi(bib2)-2) and
Q = a9I Rl (a;), ... , Rh(a;), S(a;)) define sh-equivalent stan-
dard complexes, if S has finite order coprime to 6 modulo the relators
Rl,, Rh

By the last two relators of P, H is the binary icosahedral group of order 120,
in which b1 has order 6. S(a;) = b1 then implies S(ax) = b1 = 1, whence b2 = 1
follows. As H is perfect, the last three relators of P can be Q-transformed to
become S(ai) v-1, b1 vi 1, b2v21, where v and the v, are contained in [N, N].
Hence, (7) above yields that P and (al, ... , a9, b1, b2IR1,... , Rh, S(a;), b1, b2)
define sh-equivalent standard complexes.

Such examples might even remain inequivalent when passing to the (coarser?)
equivalence classes for which Q**-transitions and the addition or deletion (if
possible) of a balanced presentation of the trivial group are admitted, i.e.
they may constitute counterexamples to (AC') which are specific for the group
which is presented.

Most of the results of this section generalize to free products with amal-
gamation, HNN-extensions and graphs of groups, compare Hog-Angeloni
[Ho-An88]. A degenerate HNN-case analogous to (18) is that

(19) P = (b1, b2, tltb1t-1b21, bib-5
, bi (blb2)-2) and

Q = (b1, b2, tIb1, bi3 b25, bi 3 (b1b2)-2)
define sh-equivalent standard complexes

which (so far) we can't Q**-transform into each other 10. In particular, if we
require the common subcomplex L = K1 U e2 U e2 of Kp and KQ to be fixed2 3
throughout a 3-deformation, where K1 denotes the 1-skeleton and e2 resp. e22 3

correspond to the second resp. the third relator, we might (at least) get a
counterexample to (rel. AC').

'This property would get lost, if a3, b3 and the relators which didn't enter the above
semisplit Q-transformation were omitted from the P; resp. Qj.

to Q immediately is seen to Q**-transform to the presentation (t1l) of Z with X = Xmin+l.



380 Hog-Angeloni/Metzler : ANDREWS-CURTIS CONJECTURE

4 Some Further Results

This article and previous chapters cannot possibly cover all publications which
are related to the (generalized) Andrews-Curtis problem. Thus we close with a
list of some relevant contributions including indications of the specific aspects
which are treated:

R. Craggs' papers [Cr791] and [Cr792] in particular deal with free splitting
homomorphisms analogously to the Stallings-Jaco characterization of the 3-
dimensional Poincare conjecture. Similarly, the double coset characterization
in Heegaard theory of 3-manifolds (J. Birman [Bi751], [Bi752]) has an ana-
logue for Q-equivalences; the latter are characterized by double cosets in
automorphism groups of free groups, see [Me85].

Craggs' publications [Cr88] and [Cr89] focus on 4-manifold aspects of (AC')
(handle decompositions resp. embeddings of 2-complexes); [Cr89] contains
an approach to control the linking phenomenon of Chapter I, § 3.2.

Finally, we recommend the paper of T.D. Cochran and J.P. Levine [CoLe9l].
It shows that (AC) may enter geometric considerations different from the orig-
inal motivations which were mentioned in Chapter I, § 4.1: Higher-dimensional
homology boundary links are fusions of boundary links iff every Q**-class of
balanced presentations of it = {1} is invertible (compare Chapter I, § 4.4).



Bibliography

[AbHo92] H. Abels and S. Holz, Higher generation by subgroups. preprint, Univer-
sitat Bielefeld. [Chapter VI

[Ad55] J. F. Adams, A new proof of a theorem of W.H. Cockroft. J. London Math.
Soc. 30 (1955), 482-488. [Chapters I, V]

[Ad75] S. I. Adian, The Burnside problem and identities in groups. Nauka,
Moscow, 1975). [Chapter V]

[AkKi85] S. Akbulut, R. Kirby, A potential smooth counterexample in dimension
to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-
Curtis conjecture. Topology 24 (1985), 375-390. [Chapters I, XII]

[A119] J. W. Alexander, Note on two three-dimensional manifolds with the same
group. Trans. Amer. Math. Soc. 20 (1919), 339-342. [Chapter I]

[A120] J. W. Alexander, Note on Riemann Spaces. Bull. Amer. Math. Soc. 26
(1920), 370-372. [Chapter VIII]

[A1901 J. M. Alonso, Inegalites isoperimetrique et quasiisometries. C. R. Acad.
Sci. Paris, 311, Serie I, 1990, 761-764. [Chapter VI]

[A192] J. M. Alonso, Combings of Groups in: Algorithms and classification
in combinatorial group theory. G. Baumslag and C. F. Miller III eds.,
Springer Verlag, Math. sci. res. inst. publ., 1992, 165-177. [Chapter VI]

[A1Br92] J. M. Alonso and M. R. Bridson, Semihyperbolic groups. Report No. 13
(1992), Univ. of Stockholm, Sweden, 59. [Chapter VII

[AnCu65] J. J. Andrews and M. L. Curtis, Free groups and handlebodies. Proc. Amer.
Math. Soc. 16 (1965), 192-195. [Chapters I, XII]

[AnCu66] J. J. Andrews and M. L. Curtis, Extended Nielsen operations in free groups.
Amer. Math. Monthly 73 (1966), 21-88. [Chapters I, V, X, XII]

[BaBoPr] Y.-G. Baik, W. A. Bogley and S. J. Pride, Asphericity of positive length
four relative presentations. in preparation. [Chapters V, X]

[BaHoPr92] Y.-G. Baik, J. Howie and S. J. Pride, The identity problem for graph
products of groups. J. Algebra, to appear. [Chapter IV, V, X]

381



382 BIBLIOGRAPHY

[BaPr] Y.-G. Baik and S. J. Pride, Generators of the second homotopy module
of presentations arising from group constructions. preprint, University of
Glasgow. [Chapters V, VII, X]

[Ba91] P. Bandieri, Platonic decompositions of 3-manifolds. Ital. B., 5 (1991),
n.7, 745-756. [Chapter VIII]

[BaPeVa84] W. Barth, C. Peters, A. Van de Ven. Compact complex surfaces. Springer-
Verlag, Berlin, 1984. [Chapter IX]

[Ba64) H. Bass, Projective modules over free groups are free. J. Algebra 1 (1964),
367-373. [Chapter III]

[Ba68] H. Bass, Algebraic Ii -Theory. W.A. Benjamin, New York, 1968. [Chap-
ter IX]

[Ba73] H. Bass, Unitary algebraic K-theory in Algebraic K-Theory III: Hermitian
K -theory and Geometric Applications. in: Springer LNM 343, 57-265,
1973. [Chapter IX]

[Ba88] S. Bauer, The homotopy type of of a 4-manifold with finite fundamental
group. in: Algebraic Topology and Transformation Groups, Springer LNM
1361, 1-6, 1988. [Chapter IX]

[Bau9l] H. J. Baues, Combinatorial homotopy and 4-dimensional complexes. de
Gruyter Expositions in Mathematics 2, De Gruyter, New York (1991).
[Chapter XII]

[BauCo9O] H. J. Baues, D. Conduche, The central series for Peiffer commutators in
groups with operators. J. Algebra 133 (1990), 1-34. [Chapter XII]

[Be801] W. H. Beckmann, Completely Aspherical 2-complexes (Thesis, Cornell
University, 1980). [Chapter V]

[Be8021 W. H. Beckmann, A certain class of non-aspherical 2-complexes. J. Pure
Appl. Algebra 16 (1980), 243-244. [Chapter V]

[Be75] H. Behr, Prasentationen von Chevalleygruppen iiber Z. Math. Z. 141
(1975), 235-241. [Chapters V, X]

[Be74] G. Bergman, Modules over coproducts of rings. Trans. Amer. Math. Soc.
200, (1974), 1-33. [Chapter III)

[BeCoCo78] I. Berstein, M. Cohen, R. Connelly, Contractible, non-collapsible products
with cubes. Topology 17 (1978), 183-187. [Chapter XI]

[Bi751] J. S. Birman, Poincard's conjecture and the homeotopy group of a closed
orientable 2-manifold. J. Austr. Math. Soc. 17 (1975), 214-221. [Chap-
ter XII]

[Bi752] J. S. Birman, On the equivalence of Heegaard splittings of closed, orientable
3-manifolds. Ann. Math. Study 84 (1975), 137-164. [Chapter XII]



BIBLIOGRAPHY 383

[Bi753] J. S. Birman, Braids, Links, and Mapping Class Groups. Ann. of Math.
Studies No. 82, Princeton University Press (1975). [Chapter VIII]

[Bo91] W. A. Bogley, An embedding for a2 of a subcomplex of a finite contractible
two-complex. Glasgow Math. J. 33 (1991), 365-371. [Chapters V, X]

[Bo92] W. A. Bogley, Unions of Cockcroft two-complexes. Proc. Edinburgh Math.
Soc, to appear. [Chapter IV, V]

[BoGu92] W. A. Bogley and M. A. Gutierrez, Mayer-Vietoris sequences in homo-
topy of 2-complexes and in homology of groups. J. Pure Appl. Algebra 77
(1992), 39-65. [Chapter IV, V, X]

[BoPr92] W. A. Bogley and S. J. Pride, Aspherical relative presentations. Proc.
Edinburgh Math. Soc. 35 (1992), 1-39. [Chapter IV, V, X]

[BoZi85] M. Boileau and H. Zieschang, Nombre de ponts et generateurs meridiens
des entrelacs de Montesinos. Comment. Math. Helvetici 60 (1985), 270-
279. [Chapter VII]

[Bo55] W. W. Boone, Certain simple unsolvable problems in the theory of groups.
1,11,111,1V. Nederl. Akad. WetensCh. Proc. Ser. A. 57 (1954), 231-237,
492-497; 58 (1955), 252-256, 571-577. [Chapter VI]

[BrMo9l] J. Bracho, L. Montejano, The scorpions: examples in stable non-collaps-
ibility and in geometric category. Topology 30 (1991), n. 4, 541-550. [Chap-
ter XI]

[BrDy8l] J. Brandenburg and M. N. Dyer, On J. H.C. Whitehead's aspherical ques-
tion I, Comment. Math. Helv. 56 (1981), 431-446. [Chapter IV, V, X]

[BrDySt83] J. Brandenburg, M. N. Dyer and R. Strebel, On J. H.C. Whitehead's as-
pherical question II. in: Low Dimensional Topology (S. Lomonaco, editor),
Contemp. Math. 20 (1983), 65-78. [Chapter IV, V, X]

[Bri92] M. Bridson, On the geometry of normal forms in discrete groups. preprint,
Princeton University, 1992. [Chapter VI]

[BrS80] S. D. Brodskii, Equations over groups and groups with one defining relator
(Russian). Uspehi Mat. Nauk. 35 (1980), 183. [Chapters V, X]

[Br72] E. H. Brown Jr., Generalizations of the Kervaire Invariant. Annals of
Math. 95 (1972), 368-383. [Chapter IX]

[Br69] E. M. Brown, The Hauptvermutung for 3-complexes. Trans. Amer. Math.
Soc. 144 (1969), 173-196. [Chapter I]

[Br82] K. Brown, Cohomology of Groups, Graduate texts in Mathematics, vol.
87, Springer-Verlag, New York, 1982. [Chapters II, III, IV, VII, IX, X]

[BrGe84] K. Brown and R. Geoheagan, An infinite dimensional torsion-free FP.-
group. Invent. Math. 77 (1984), 367-381. [Chapter IV]



384 BIBLIOGRAPHY

[BrCo74] M. Brown, M. M. Cohen, A proof that simple-homotopy equivalent poly-
hedra are stably homeomorphic. Michigan Math. J. 21 (1974), 181-191.
[Chapter I]

[Br80] R. Brown, On the second relative homotopy group of an adjunction space:
An exposition of a theorem of J. H.C. Whitehead. J. London Math. Soc.
(2) 22 (1980), 146-152. [Chapters V, X]

[Br84] R. Brown, Coproducts of crossed P-modules: Applications to second homo-
topy groups and to the homology of groups. Topology 23 (1984), 337-345.
[Chapter IV, V, X]

[Br92] R. A. Brown, Generalized group presentations and formal deformations of
CW-complexes. Trans. Amer. Math. Soc., to appear. [Chapters I, XII]

[BrHi78] R. Brown and P. J. Higgins, On the connection between the second relative
homotopy groups of some related spaces. Proc. London Math. Soc. (3), 36
(1978), 193-212. [Chapter IV, V, X]

[BrHu82] R. Brown and J. Huebschmann, Identities among relations. in: Low-
Dimensional Topology (R. Brown and T. L. Thickstun, editors), London
Math. Soc. Lecture Note Series 48 (1982), 153-202. [Chapter IV, V, X]

[Br761] W. J. Browning, A relative Nielsen theorem. Cornell University, Ithaca
N.Y. (1976), manuscript. [Chapters I, XII]

[Br762] W. J. Browning, The effect of Curtis-Andrews moves on Jacobian matri-
ces of perfect groups. Cornell University, Ithaca N.Y. (1976), manuscript.
[Chapter XII]

[Br78] W. J. Browning, Homotopy types of certain finite CW-complexes with fi-
nite fundamental group. Ph.D. Thesis, Cornell University 1978. [Chap-
ters III, IX]

[Br7911 W. J. Browning, Pointed lattices over finite groups. ETH pre-print (un-
published), February 1979. [Chapter III]

[Br792] W. J. Browning, Truncated projective resolutions over a finite group. ETH
pre-print (unpublished), April 1979. [Chapter III]

[Br793] W. Browning, Finite CW-complexes of cohomological dimension 2 with
finite abelian 7r1. ETH preprint, (unpublished), May 1979. [Chapter III]

[BuZi85] G. Burde and H. Zieschang, Knots. de Gruyter Series in Mathematics 5,
De Gruyter, New York (1985). [Chapters V, VII, X]

[CaSh71] S. E. Cappell and J. L. Shaneson. On four-dimensional surgery and ap-
plications. Comment. Math. HeIv. 46 (1971), 500-528. [Chapter IX]

[CaEi56] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University
Press, Princeton, N. J. 1956. [Chapters II, IV]

[Ca65] B. G. Casler, An embedding theorem for connected 3-manifolds with bound-
ary. Proc. Amer. Math. Soc. 16 (1965), 559-566. [Chapters I, XI]



BIBLIOGRAPHY 385

[CaSp92] A. Cavicchioli and F.Spaggiari, The classification of 3-manifolds with
spines related to Fibonacci Groups, Groups and classifying spaces. Lec-
ture Notes in Mathematics, Springer-Verlag, Berlin-New York, to appear.
[Chapter Will

[Ce68] J. Cerf, Sur les diffeomorphismes de la sphere de dimension trois (r4 = 0).
Springer Lecture Notes in Math. 53 (1968). [Chapter I]

[Ch74] T.A. Chapman, The topological invariance of Whitehead torsion. Amer.
J. of Math. 96 (1974), 488-497. [Chapter I]

[Ch67] D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra.
Proc.Camb. Phil. Soc. 63 (1967), 353-357. [Chapter I]

[Ch80] D. R. J. Chillingworth, Correction: Collapsing three-dimensional convex
polyhedra. Math. Proc.Cam. Phil. Soc. 88 (1980), 307-310. [Chapter I]

[ChCoHu8l] I. Chiswell, D. J. Collins and J. Huebschmann, Aspherical group presen-
tations. Math. Z. 178 (1981), 1-36. [Chapters V, X]

[Chu4l] A. Church, The calculi of lambda conversion. Princeton University Press,
Princeton (1941). [Chapter VI]

[CoLe9l] T.D.Cochran, J.P. Levine, Homology boundary links and the Andrews-
Curtis conjecture. Topology 30 (1991), 31-239. [Chapter XII]

[Co51] W. H. Cockcroft, Note on a theorem by J. H.C. Whitehead. Quart. J.
Math. Oxford (2) 2 (1951), 159-160. [Chapters V, X]

[Co54] W. H. Cockcroft, On two-dimensional aspherical complexes. Proc. London
Math. Soc. (3) 4 (1954), 375-384. [Chapter IV, V, X]

[CoSw6l] W. H. Cockcroft and R. G. Swan, On the homotopy type of certain two-
dimensional complexes. Proc. London Math. Soc. (3) 11 (1961), 193-202.
[Chapters II, V, X]

[Co89] D. E. Cohen, Combinatorial group theory: a topological approach. Cam-
bridge University Press, Cambridge, 1989. [Chapter VI]

[Co91] D. E. Cohen, Isodiametric and isoperimetric inequalities for group presen-
tations. Intern. J. Alg.Comp. 1, 315-320, 1991. [Chapter VI]

[Co78] J. M. Cohen, Aspherical 2-complexes. J. Pure Appl. Algebra 12 (1978),
101-110. [Chapters V, X]

[Co69] M. M. Cohen, A general theory of relative regular neighbourhoods. Trans.
Amer. Math. Soc. 136 (1969), 189-229. [Chapter I]

[Co73] M. M. Cohen, A Course in Simple-Homotopy Theory. GTM 10, Springer-
Verlag, New York Heidelberg Berlin (1973). [Chapters I, VII, XII]

[Co75] M. M. Cohen, Dimension estimates in collapsing X X P. Topology 14
(1975), 253-256. [Chapter XI]



386 BIBLIOGRAPHY

[Co77] M. M. Cohen, Whitehead torsion, group extensions and
Zeeman's conjecture in high dimensions. Topology 16 (1977), 79-88.
[Chapters I, IX, XI, XII]

[CoMeSa85] M. M. Cohen, W. Metzler, K.Sauermann, Collapses of K x I and group
presentations. Amer. Math. Soc.Contemp. Math. 44 (1985), 3-33. [Chap-
ters I, XI]

[CoMeZi81] M. M. Cohen, W. Metzler, A. Zimmermann, What does a basis of F(a, b)
look like?. Math. Ann. 257 (1981), 435-445. [Chapters I, XI]

[CoHu82] D. J. Collins and J. Huebschmann, Spherical diagrams and identities
among relations. Math. Ann. 261 (1982), 155-183. [Chapters V, X]

[CoPe85] D. J. Collins and J. Perraud, Cohomology and finite subgroups of small
cancellation quotients of free products. Math. Proc.Camb. Phil. Soc. 97
(1985), 243-259. [Chapters V, X]

[CoF164] P. E. Conner and E. E. Floyd, Differentiable periodic maps. Springer-
Verlag, Berlin (1964). [Chapter IX]

[CoTh88] D. Cooper and W. P.Thurston, Triangulating 3-manifolds using 5 vertex
link types. Topology 27 (1988), 23-25. [Chapter VIII]

[CoDePa9O] M. Coornaert, T. Delzant, and A. Papadopoulos, Notes sur les groupes
hyperboliques de Gromov. Lecture Notes in Mathematics 1441, Springer
Verlag, Berlin-Heidelberg-New York (1990). [Chapter VI]

[Cr791] R. Craggs, Free Heegaard diagrams and extended Nielsen transformations,
1. Michigan Math. J. 26 (1979), 161-186. [Chapters I, XII]

[Cr792] R. Craggs, Free Heegaard diagrams and extended Nielsen transformations,
II. Ill. J. Math. 23 (1979), 101-127. [Chapters I, XII]

[Cr88] R. Craggs, On the algebra of handle operations in 4-manifolds. Topology
and its appl. 30 (1988), 237-252. [Chapters I, XII]

[Cr89] It. Craggs, Freely reducing group readings for 2-complexes in 4-manifolds.
Topology 28 (1989), 247-271. [Chapters I, XII]

[CrHo87] It. Craggs, J. Howie, On group presentations, coproducts and inverses.
Ann. Math. Study 111 (1987), 213-220. [Chapters I, XII]

[CrFo63] It. H. Crowell, R. H. Fox, Introduction to knot theory. Ginn and Co. (1963).
[Chapter I]

[CuRe62] C. W. Curtis and I. Reiner. Representation theory of finite groups. John
Wiley & Sons, New York, 1962. [Chapter IX]

[De12] M. Dehn, Uber unendliche diskontinuierliche Gruppen. Math. Ann. 71,
116-144, 1912. [Chapter VI]

[DeMe88] G. Denk, W. Metzler, Nielsen reduction in free groups with operators.
Fund. Math. 129 (1988), 181-197. [Chapters I, XII]



BIBLIOGRAPHY 387

[Di68] P. Dierker, Note on collapsing K x I where K is a contractible polyhedron
Proc.A.M.S. 19 (1968), 452-428 [Chapter XI]

[Do83] S. K. Donaldson, An application of gauge theory to the topology of 4-
manifolds. J. Diff. Geom. 18, 269-316, (1983). [Chapter IX]

[Do90] S. K. Donaldson, Polynomial invariants for smooth 4-manifolds. Topology
29, 257-316, (1990). [Chapter IX]

[DuE1Gi92] A. Duncan, G. Ellis, N. Gilbert, A Meyer- Vietoris sequence in group ho-
mology and the decomposition of relation modules. preprint, Heriot-Watt
University and University College Galway. [Chapter IV, V]

[DuHol] A. J. Duncan and J. Howie, One relator products with high-powered rela-
tors. preprint, Heriot-Watt University. [Chapters V, X]

[DuHo921] A. J. Duncan and J. Howie, Weinbaum's conjecture on unique subwords of
non-periodic words. Trans. Amer. Math. Soc. 115 (1992), 947-954. [Chap-
ter V]

[DuHo922] A. J. Duncan and J. Howie, One relator products with high-powered rela-
tors. preprint, Heriot-Watt University. [Chapter V]

[Du76] M. J. Dunwoody, The homotopy type of a two-dimensional complex. Bull.
London Math. Soc. 8 (1976), 282-285. [Chapters I, II]

[Du80] M. J. Dunwoody, Answer to a conjecture of J. M.Cohen. J. Pure Appl.
Algebra 16 (1980), 249. [Chapters V, X]

[Dy76] M. N. Dyer, Homotopy classification of (ir,m)-complexes. J. of Pure and
Appl. Alg. 7 (1976), 249-282. [Chapter III]

[Dy79] M. N. Dyer, Trees of homotopy types of (ir,m)-complexes. London
Math. Soc. Lecture Note Series 36 (1979), 251-254. [Chapter III]

[Dy81] M. N. Dyer, Simple homotopy types for (G,m)-complexes. Proc. Amer.
Math. Soc. 111-115, (1981). [Chapter IX]

[Dy85] M. N. Dyer, Invariants for Distinguishing between Stably Isomorphic Mod-
ules. J. Pure Appl. Algebra 37 (1985), 117-153. [Chapters III, VII]

[Dy86] M. N. Dyer, A topological interpretation for the bias invariant.
Proc. Amer. Mth. Soc. 89 (1986), 519-523. [Chapter III]

[Dy871] M. N. Dyer, Subcomplexes of two-complexes and projective crossed mod-
ules. in: Combinatorial Group Theory and Toplogy (S. M. Gersten and J.
Stallings, editors) Ann. of Math. Studies 111 (1987), 255-264. [Chapter IV]

[Dy872] M. N. Dyer, Localization of group rings and applications to 2-complexes.
Comm. Math. Helvetici, 62 (1987), 1-17. [Chapter IV]

[Dy911] M. N. Dyer, Cockcroft 2-complexes. preprint, University of Oregon. [Chap-
ter IV, X]



388 BIBLIOGRAPHY

[Dy912] M. N. Dyer, Aspherical 2-complexes and the homology of groups. preprint,
University of Oregon. [Chapter IV]

[Dy93] M. N. Dyer, Groups with no infinite perfect subgroups and aspherical 2-
complexes. Comment. Math. Helv., 68 (1993), 333-339. [Chapter X]

[DyHa92] M. N. Dyer and J. Harlander, A note on Cockcroft complexes. Glasgow
Math. J., to appear. [Chapter V]

[DySi73] M. N. Dyer and A. J. Sieradski., Trees of homotopy types of two-
dimensional CW-complexes. Comm. Math. Helv. 48 (1973), 31-44. [Chap-
ters II, III]

[Ed88] M. Edjvet, On a certain class of group presentations. Math. Proc.Comb.
Phil. Soc. 105 (1988), 25-35. [Chapters V, X]

[Ed91] M. Edjvet, On the asphericity of one-relator relative presentations.
preprint, University of Nottingham. [Chapter V]

[EdHo9l] M. Edjvet and J. Howie, The solution of length four equations over groups.
Trans. Amer. Math. Soc. 326 (1991), 345-369. [Chapters V, X]

[EdEw90] A. Edmonds and J. Ewing, Topological realization of equivariant inter-
section forms. preprint, (1990). [Chapter IX]

[EdGi83] R. Edwards, D. Gillman, Any spine of the cube is 2-collapsible. Can. J.
Math. 35 (1983), 43-48. [Chapter XI]

[E1Po86] G. Ellis and T. Porter, Free and projective crossed modules and the second
homology group of a group. J. Pure and Appl. Algebra, 40 (1986), 27-31.
[Chapter IV]

[Ep92] D. B. H. Epstein, J. W. Cannon, D. F. Holt, S.V.F. Levy, M.S. Paterson,
W.P. Thurston, Word processing in groups. Jones and Bartlett, Boston-
London, 1992. [Chapter VI]

[EvMa77] B. Evans and J. Maxwell, Quaternion actions of S3. Amer. J. Math. 101
(5) (1979), 1123-1130. [Chapter VIII]

[Fe70] R. Fenn, Embedding polyhedra. Proc. London Math. Soc. 2 (1970), 316-318
[Chapter XI]

[Fe83] R. Fenn, Techniques in Geometric Topology. London Mathematical Society
Lecture Note Selries 57 (Cambridge University Press, Cambridge, 1983).
[Chapters III, V, X]

[F1Oe84] W. Floyd, U. Oertel, Incompressible surfaces via branched surfaces. Topol-
ogy 23 (1984), 117-125. [Chapter XI]

[Fo-Ra40] D. I. Fouxe-Rabinovitch, Uber die Automorphismengruppe der freien Pro-
dukte, I. Math. Sb. 8 (1940), 265-276. [Chapters I, XII]

[Fo53] R. H. Fox, Free differential calculus I. Ann. of Math. (1953), 547-560.
[Chapters II, III]



BIBLIOGRAPHY 389

[Fr35] W. Franz, Uber die Torsion einer Uberdeckung. J. reine angew. Math. 173
(1935), 245-254. [Chapter I]

[Fr76] B.M. Freed, Embedding contractible 2-complexes in E4. Proc. Amer. Math.
Soc. 54 (1976), 423-430. [Chapter I]

[Fr82] M.H. Freedman, The topology of 4-dimensional manifolds. J. Diff. Geom.
17 (1982), 357-453. [Chapter I]

[Fr84] M. H. Freedman, The disk theorem for four-dimensional manifolds. in
Proc. Int Conf. Warsaw, 647-663, (1984). [Chapter IX]

[FrQu90] M. H. Freedman and F.Quinn, Topology of Four-Manifolds. Princ. Math.
Series 39, Princeton University Press, (1990). [Chapter IX]

[Ga68] T. Ganea, Homology et extensiones centrales de groupes. C. R. Acad. Sci.
Paris, 266 (1968), 556-558. [Chapter IV]

[Ge83] S. M. Gersten, Conservative groups, indicability, and a conjecture of Howie
J. Pure Appl. Algebra 29 (1983), 59-74. [Chapter IV, V, X]

[Ge86] S. M. Gersten, Products of conjugacy classes in a free group: A counterex-
ample. Math. Z. 192 (1986), 167-181. [Chapter V]

[Ge871] S. M. Gersten, Reducible diagrams and equations over groups. in: Essays
in Group Theory (S. M. Gersten, editor), MSRI Publications 8 (1987),
15-73. [Chapters V, VI]

[Ge872] S. M. Gersten, Branched coverings of 2-complexes and diagrammatic re-
ducibility. Trans. Amer. Math. Soc. 303 (1987), 689-706. [Chapter V]

[Ge881] S. M. Gersten, The isoperimetric inequality and the word problem. unpub-
lished, 1988. [Chapter VI]

[Ge882] S. M. Gersten, On Rapaport's example in presentations of the trivial group.
University of Utah, Salt Lake City (1988), preprint. [Chapter XII]

[Ge90] S. M. Gersten, Isoperimetric and isodiametric functions of finite presen-
tations. preprint, 1990. [Chapter VI]

[Ge911] S. M. Gersten, Dehn functions and l1-norms of finite presentations. Pro-
ceedings of the workshop on algorithmic problems, C. F. Miller III and
G. Baumslag editors, Springer Verlag, 1991. [Chapter VI]

[Ge912] S. M. Gersten, The double exponential theorem for isodiametric and
isoperimetric functions. Intern. J. Alg.Comp. 1, 321-327, 1991. [Chap-
ter VI]

[Ge92] S. M. Gersten, Bounded cocycles and combings of groups. Intern. J. of
Algebra and Comp. 2 (3) (1992), 307-326. [Chapter VI]

[GeRo62] M. Gerstenhaber and O. S. Rothaus, The solution of sets of equations in
groups. Proc. Nat. Acad. Sci. USA 68 (1962), 1531-1533. [Chapters V, X]



390 BIBLIOGRAPHY

[Gh90] E. Ghys, Les groupes hyperboliques Seminaire Bourbaki, 42eme annee, n.
72 (1990). [Chapter VI]

[GhHa9O] E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'apres
Mikhael Gromov. Birkhauser, Boston (1990). [Chapter VII

[GhHa9l] E. Ghys and P. de la Harpe, Infinite groups as geometric objects. in: Er-
godic theory, symbolic dynamics and hyperbolic spaces T. Bedford, M.
Keane, C. Series, eds., 299-314, Oxford University Press, Oxford (1991).
[Chapter VI]

[Gi92] N. D. Gilbert, Central extensions of groups and an embedding question of
J. H.C. Whitehead. ArCh. Math. 58 (1992), 114-120. [Chapter IV, V, X]

[Gi93] N. D. Gilbert, Identities between sets of relations. J. Pure Appl. Algebra
83 (1993), 263-276. [Chapter V]

[GiHi89] N. D. Gilbert and P. J. Higgins, The non-abelian tensor product of groups
and related constructions. Glasgow Math. J. 31 (1989), 17-29. [Chapter V]

[GiHol] N. D. Gilbert and J. Howie, Threshold subgroups for Cockcroft 2-
complexes. preprint, Heriot-Watt University. [Chapters V, X]

[GiHo2] N. D. Gilbert and J. Howie, Cockcroft properties of graphs of 2-complexes.
Proc. Roy. Soc. Edinburgh. (to appear). [Chapters V, X]

[GiHo92] N. D. Gilbert and J. Howie, Threshold subgroups for Cockcroft 2-
complexes. preprint, Heriot-Watt University. [Chapter IV]

[Gi86] D. Gillman, Bing's house and the Zeeman Conjecture. Topology and its
Appl. 24 (1986), 147-151. [Chapter XI]

[GiRo83] D. Gillman, D. Rolfsen, The Zeeman conjecture for standard spines is
equivalent to the Poincard conjecture. Topology 22(1983), n.3, 315-323.
[Chapter XI]

[GiRo91] D. Gillman, D. Rolfsen, Three-manifolds embed in small 3-complexes. In-
ternational J. Math. 3 (1991), n.2, 179-183. [Chapter XI]

[Go84] R. E. Gompf, Stable diffeomorphisms of compact 4-manifolds. Top. and
its appl. 18, 115-120, (1984). [Chapter IX]

[Go91] R. E. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the
Andrews-Curtis and Schoenflies problems., Topology 30 (1991), 97-115.
[Chapters I, XII]

[Go68] R. E. Goodrick, Non simplicially collapsible triangulation of I".
Proc.Camb. Phil. Soc. 64 (1968), 31-36. [Chapter I]

[GoSh86] F. Gonzalez-Acuiia and H. Short, Knot surgery and primeness. Math.
Proc.Camb. Phil. Soc. 99 (1986), 89-102. [Chapters V, X]

[GrHa8l] M. J. Greenberg and J. R. Harper, Algebraic Topology: A First Course,
Benjamin/Cummings, Mendlo Park (1981).



BIBLIOGRAPHY 391

[Gr87] M. Gromov, Hyperbolic groups in: Essays in group theory. (S. Gersten,
ed.), Springer Verlag, Math. sci. res. inst. publ., 1987, 75-263. [Chapter VI]

[Gr79] K. W. Gruenberg, Free abelianized extensions of finite groups. Lond. Math.
Soc. Lecture Notes Series 36 (1979), 71-104. [Chapter I]

[Gr91] K. W. Gruenberg , Homotopy classes of truncated projective resolutions-
a new look at Browning's work. Queen Mary College, London, (1991),
preprint. [Chapter III]

[Gu87] N. Gupta, Free Group Rings, Contemp. Math. 66 (Amer. Math. Soc.,
1987). [Chapters V, X]

[GuLa91]

[GuLa93]

[GuRa8l]

[Ha49]

[HaKr88]

[HaKr90]

[HaKr92r]

[HaKr922]

[HaKr923]

M. Gutierrez, M. P. Latiolais, Partial homotopy type of finite two-
complexes. Math. Zeit. 207 (1991), 359-378. [Chapter III]

M. Gutierrez, M. P. Latiolais, Two-complexes with Fundamental group a
semi-direct product of cyclics. Boletin de la Sociedad Matematica Mexi-
cana (to appear). [Chapter III]

M. A. Gutierrez and J. G. Ratcliffe, On the second homotopy group. Quart.
J. Math. Oxford (2) 32 (1981), 45-55. [Chapter IV, V, X]

M. Hall, Jr., Subgroups of finite index in free groups. Canadian Math. J.
1 (1949), 187-190. [Chapters V, X]

I. Hambleton and M. Kreck, On the classification of topological 4-manifolds
with finite fundamental group. Math. Ann. 280, 85-104, (1988). [Chap-
ter IX]

I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with
finite fundamental group. Invent. Math. 102 (1990), 109-114. [Chapter IX]

I. Hambleton and M. Kreck, Cancellation of lattices and finite two-
complexes. to appear J. f. reine u. angew. Math. [Chapters IX, III]

I. Hambleton and M. Kreck, Cancellation of hyperbolic forms and topolo-
gical four-manifolds. to appear J. f. reine u. angew. Math. [Chapter IX]

I. Hambleton and M. Kreck, Cancellation, elliptic surfaces and the topol-
ogy of certain four-manifolds. to appear J. f. reine u. angew. Math. [Chap-
ter IX]

[HaKr88] I. Hambleton and M. Kreck, On the classification of topological 4-manifolds
with finite fundamental group. Math. Ann. 280, 85-104, (1988). [Chap-
ter IX]

[HaKrTe92] I. Hambleton, M. Kreck and P. Teichner, Four-manifolds with fundamental
group of order 2. preprint, (1992). [Chapter IX]

[Ha91] J. Harlander, Minimal Cockcroft subgroups. (to appear in Glasgow J.
Math.). [Chapter IV]



392 BIBLIOGRAPHY

[Ha92] J. Harlander, Solvable groups with cyclic relation module. University of
Oregon, Eugene OR. (1992), preprint, to appear in: J. Pure Appl. Algebra.
[Chapter I]

[Ha81] A. E. Hatcher, Hyperbolic structures of arithmetic type on some link com-
plements. J. London Math. Soc. (2) 27 (1981), 345-355. [Chapter VIII]

[Ha89] A. E. Hatcher, Notes on basic 3-manifold topology. Cornell University,
Ithaca N.Y. (1989), preprint. [Chapter I]

[He76] J. Hempel, 3-Manifolds. Annals of Math. Studies 86, Princeton University
Press, Princeton, New Jersey, 1976. [Chapter VIII]

[He90] J. Hempel, The lattice of branched covers over the figure-eight knot. Topol-
ogy Appl. 34 (1990), 183-201. [Chapter VIII]

[Hi40] G. Higman, The units of group rings. Proc. London Math. Soc. (2) 46
(1940), 231-248. [Chapters V, X]

[Hi74] H. M. Hilden, Every closed, orientable 3-manifold is a 3-fold branched cov-
ering space of S. Bull. Amer. Math. Soc. 80 (1974), 1243-1244. [Chap-
ter VIII]

[Hi76] H. M. Hilden, Three-fold branched coverings of S3. Amer. J. Math. 98
(1976), 989-997. [Chapter VIII]

[HiLoMo83] H.M. Hilden, M.T. Lozano, and J.M. Montesinos, The Whitehead link,
the Borromean rings, and the knot 946 are universal. Collect. Math. 34
(1983), 19-28. [Chapter VIII]

[HiLoMo851] H. M. Hilden, M. T. Lozano,and J. M. Montesinos, On knots that are
universal. Topology 24 (1985), 499-504. [Chapter VIII]

[HiLoMo852] H. M. Hilden, M. T. Lozano, and J. M. Montesinos, On the universal group
of the Borromean rings. [Chapter VIII]

[HiSt7l] P. Hilton and U. Stammbach, A course in homological algebra. Springer-
Verlag, Berlin-Heidelberg-New York (1971). [Chapter IV]

[Ho831 C. Hog, Pseudofl&chen and singulare 3-Mannigfaitigkeiten. Staatsexamen-
sarbeit, Frankfurt 1983. [Chapter VIII]

[Ho-An88] C. Hog-Angeloni, Beitrige zum {einfachen) Homotopietyp zweidimension-
aler Komplexe zu freien Produkten and anderen gruppentheoretischen Kon-
struktionen. Thesis, Frankfurt/Main (1988). [Chapters I, VII, XII]

[Ho-An901] C. Hog-Angeloni, A short topological proof of Cohn's theorem. Springer
Lecture Notes in Math. 1440 (1990), 90-95. [Chapter III]

[Ho-An902] C. Hog-Angeloni, On the homotopy type of 2-complexes with a free product
of cyclic groups as fundamental group. Springer Lecture Notes in Math.
1440 (1990), 96-108. [Chapter III]



BIBLIOGRAPHY 393

[Ho-An92] C. Hog-Angeloni, University of Frankfurt, Germany (1992), manuscript.
[Chapter VIII]

[Ho-AnLaMe9O] C. Hog-Angeloni, P. Latiolais, W. Metzler, Bias ideals and obstructions
to simple-homotopy equivalence. Springer Lecture Notes in Math. 1440
(1990), 109-121. (Chapters III, VIII

[HoLuMe85] C. Hog, M. Lustig, W. Metzler, Presentations classes, 3-manifolds and free
products. Springer Lecture Notes in Math. 1167 (1985), 154-167. [Chap-
ters 1, XIIJ

[Ho-AnMe9O] C. Hog-Angeloni, W. Metzler, Stablilization by free products giving rise to
Andrews-Curtis equivalences. Note di Matematica 10, Suppl. n. 2 (1990),
305-314. [Chapters III, XII]

[Ho-AnMe9l] C. Hog-Angeloni, W. Metzler, Andrews-Curtis-Operationen and hohere
Kommutatoren der Relatorengruppe. J. Pure Appl. Algebra 75 (1991),
37-45. [Chapter XIII

[Ho31] H. Hopf, Uber die Abbildungen der dreidimensionalen Sphare auf die
Kugelfiache. Math. Ann. 104 (1931), 637-665. [Chapter I]

[Ho41] H. Hopf, Fundamentalgruppe and zweite Bettische Gruppe. Comment.
Math. Hely. 14 (1941), 257-309. [Chapter II]

[Ho79) J. Howie, Aspherical and acyclic 2-complexes. J. London Math. Soc. (2)
20 (1979), 549-558. [Chapters V, X]

[Ho811] J. Howie, On the fundamental group of an almost-acyclic 2-complex. Proc.
Edinburgh Math. Soc. 24 (1981), 119-122. [Chapters V, X]

[Ho812] J. Howie, On pairs of 2-complexes and systems of equations over groups.
J. reine angew. Math. 324 (1981), 165-174. [Chapters V, X]

[Ho82] J. Howie, On locally indicable groups. Math. Z. 180 (1982), 445-461.
[Chapters V, X]

[Ho831] J. Howie, The solution of length three equations over groups. Proc. Edin-
burgh Math. Soc. 26 (1983), 89-96. [Chapters V, X]

[Ho832] J. Howie, Some remarks on a problem of J. H. C. Whitehead. Topology
22 (1983), 475-485. [Chapters V, X]

[Ho84] J. Howie, Cohomology of one-relator products of locally indicable group. J.
London Math. Soc. (2) 30 (1984), 419-430. [Chapters V, X]

[Ho85] J. Howie, On the asphericity of ribbon disc complements. Trans. Amer.
Math. Soc. 289 (1985), 281-302. [Chapters V, X]

[Ho87] J. Howie, How to generalize one-relator group theory. in: Combinato-
rial Group Theory and Topology, S. M. Gersten and J. R. Stallings, eds.,
Annals of Mathematics Studies 111 (Princeton University Press, 1987).
[Chapters V, X]



394 BIBLIOGRAPHY

[Ho89] J. Howie, The quotient of a free product of groups by a single high-powered
relator. I. Pictures. Fifth and higher powers. Proc. London Math. Soc. (3)
59 (1989), 507-540. [Chapters V, X]

[Ho90] J. Howie, The quotient of a free product of groups by a single high-powered
relator. II. Fourth powers. Proc. London Math. Soc. (3) 61 (1990), 33-62.
[Chapters V, X]

[HoSc79] J. Howie and H. R. Schneebeli, Groups of finite quasi-projective dimension.
Comment. Math. Helvetici 54 (1979), 615-628. [Chapters V, X]

[HoSc83] J. Howie and H. R. Schneebeli, Homological and topological properties
of locally indicable groups. Manuscripta Math. 44 (1983), 71-93. [Chap-
ters V, X]

[Hu59] S. T. Hu, Homotopy theory. Academic Press (1959). [Chapter I]

[Hu90] G. Huck, Embeddings of acyclic 2-complexes in S4 with contractible com-
plement. Springer Lecture Notes in Math. 1440 (1990), 122-129. [Chap-
ter I]

[HuRo92] G. Huck and S. Rosebrock, Elm verallgemeinerter Gewichtstest mit Anwen-
dungen auf Baumprisentationen, Math. Z. 211 (1992), 351-367. [Chap-
ters V, VI]

[HuRo93] G. Huck and S. Rosebrock, A bicombing that implies a sub-exponential
Isoperimetric Inequality. to appear in the Edinborough Proceedings, 1993.
[Chapter VI]

[Hu69] J. F. P. Hudson, Piecewise linear topology. W.A. Benjamin (1969). [Chap-
ter I]

[Hu79] J. Huebschmann, Cohomology theory of aspherical groups and of small
cancellation groups J. Pure Appl. Algebra 14 (1979), 137-143. [Chap-
ters V, X]

[Hu81] J. Huebschmann, Aspherical 2-complexes and an unsettled problem of J.
H.C. Whitehead. Math. Ann. 258 (1981), 17-37. [Chapters V, X]

[Hu35] W. Hurewicz, Kon. WetensCh. Amsterdam, 38 (1935), 112-9; 521-8; 39
(1936), 117-125, 215-24. [Chapter II]

[Ig791] K. Igusa, The generalized Grassmann invariant. Brandeis University,
Waltham(Mass) (1979), preprint. [Chapter V]

[Ig792] K. Igusa, The Borel regulator on pictures. Brandeis University,
Waltham(Mass) (1979), preprint. [Chapter V]

[Ik71] H. Ikeda, Acyclic fake surfaces. Topology 10 (1971), 9-36. [Chapter XI]

[Ik71] H. Ikeda, Acyclic fake surfaces. Topology 10 (1971), 9-36. [Chapter I]

[Iv92] S. V. Ivanov, On the Burnside problem on periodic groups. Bull. Amer.
Math. Soc. 27 (1992), 257-260. [Chapter V]



BIBLIOGRAPHY 395

[Ja69] W. Jaco, 3-manifolds with fundamental group a free product. Bull. Amer.
Math. Soc. 75 (1969), 972-977. [Chapters I, XII]

[JaOr84] W. Jaco and U. Oertel, An algorithm to decide if a 3-manifold is a Haken
manifold. Topology 23 No. 2 (1984), 195-205. [Chapter VIII]

[Jo80] D. L. Johnson, Topics in the theory of group presentations. Lond. Math.
Soc. Lect. Notes 42 (1980), Cambridge University Press. [Chapter VI]

[Ju86] A. Juhasz, Small cancellation theory with a weakened small cancellation
hypothesis. 1. The basic theory. Israel J. Math. 55 (1) (1986), 65-93.

[Chapter VI]

[Ju87] A. Juhasz, Small cancellation theory with a weakened small cancella-
tion hypothesis. 2. The word problem. 3. The conjugacy problem. Israel
Journ. of Math. 58 (1987), 19-53. [Chapter VI]

[Ju89] A. Juhasz, Small cancellation theory with a unified small cancellation con-
dition. Journ. of London Math. Soc. (2) 40 (1989) 57-80. [Chapter VI]

[vK32] E. R. van Karnpen, Komplexe in euklidischen Raumen. Abh. Math. Sem.
Univ. Hamburg 9 (1932), 72-78, correction: 152-153. [Chapter I]

[vK33] E. R. van Kampen, On some lemmas in the theory of groups. Amer. J.
Math. 55 (1933), 268-273. [Chapters V, X]

[Ka72] I. Kaplansky, Fields and Rings. (University of Chicago Press (1972).
[Chapters V, X]

[KaZi92] R. Kaufmann and H. Zieschang, On the rank of NEC groupsin: Discrete
groups and Geometry. Eds. W.J. Harvey and C. Maclachlan, LMS Lec-
ture Note Series 173, Cambridge University Press (1992), 137-147. [Chap-
ter VII]

[KiPi93] C. Kilgour and S. J. Pride, Cockcroft presentations. University of Glasgow,
preprint, (1993). [Chapter X]

[Ki78] R. C. Kirby, Problems in low dimensional manifold theory. Amer. Math.
Soc. Proc. of Symposia in Pure Math. 32 (1978), 273-312. [Chapter I]

[Ki89] R. C. Kirby, The topology of 4-manifolds. Springer Lecture Notes in Math.
1374 (1989). [Chapter I]

[KiSi77] R. C. Kirby and L. Siebenmann, Foundational essays on topological mani-
folds, smoothings and triangulations. Princeton University Press, Annals
of Math. Studies No. 88 (1977). [Chapter IX]

[KiTa89] R. C. Kirby and L. R. Taylor, Pin structures on low-dimensional ma-
nifolds. in: Geometry of Low- Dimensional Manifolds: 2. edited by
S.K.Donaldson and C.B.Thomas, London Math.Soc. Lecture Note Se-
ries 151, Cambridge University Press 1989. [Chapter IX]

[K192] A. A. Klyachko, A funny property of the sphere and equations over groups.
preprint, Moscow State University (1992). [Chapters V, X]



396 BIBLIOGRAPHY

[Kn29] H. Kneser, Geschlossene Fldchen in dreidimensionale Mannigfaltigkeiten.
Jahresber. DeutsCh. Math.-Verein. 38 (1929), 248-260. [Chapter VIII]

[Kr79] M. Kreck, Isotopy classes of diffeomorphisms of (k - 1)-connected almost
parallelizable manifolds. in: Algebraic Topology, Aarhus 1978, Springer
LNM 763 (1979), 643-661. [Chapter IX]

[Kr841] M. Kreck, Smooth structures on closed 4-manifolds up to connected sum
with S2 X S2. preprint, (1984). [Chapter IX]

[Kr842] M. Kreck, Some closed 4-manifolds with exotic differentiable structure.
Springer Lecture Notes in Math. 1051 (1984), 246-262. [Chapter I]

[Kr85] M. Kreck, Surgery and Duality. To appear as a book in the Vieweg-
Verlag, Wiesbaden. As a preprint of the Johannes-Gutenberg-Universitat
Mainz 1985 available under the title: An Extension of Results of Browder,
Novikov and Wall about Surgery on Compact Manifolds. [Chapter IX]

[KrSc84] M. Kreck and J. A. Schafer, Stable and unstable classification of manifolds:
some examples. Comment. Math. Helv. 59 (1984), 12-38. [Chapter IX]

[KrMe83] R. Kreher, W. Metzler, Simpliziale Transformationen von Polyedern and
die Zeeman- Vermutung. Topology 22 (1983), 19-26. [Chapters I, XI]

[Kr85] S. Krstic, Systems of equations over locally p-indicable groups. Invent.
Math. 81 (1985), 373-378. [Chapters V, X]

[Ku53] A. G. Kurosch, Gruppentheorie. Akademie-Verlag (1953). [ACh. XII]

[La86] M. P. Latiolais, The simple homotopy type of finite 2-dimensional CW-
complexes with finite abelian ir1i Trans. of the A.M.S. 293 (2) (1986),
655-661. [Chapter III]

[La91] M. P. Latiolais, When homology equivalence implies homotopy equivalence
for 2-complexes. J. Pure & A Alg. 76 (1991), 155-165. [Chapters III, IX]

[LaU86] U. Lattwin, Spaltung der Homotopieklassen and Prasentierungen zu freien
Produkten von Gruppen. Ph.D. Thesis, Dortmund (1986). [Chapter III]

[LeWi90] R. Lee and D. M. Wilczynski, Locally flat 2-spheres in simply connected
4-manifolds. Comment. Math. Helv. 65 (1990), 388-412. [Chapter IX]

[Le62] F. Levin, Solutions of equations over groups. Bull. Amer. Math. Soc. 68
(1962), 603-604. [Chapters V, X]

[Le90] F. Levin, lecture Bochum 1990, unpublished. [Chapter VII]

[Le77] D. W. Lewis, Forms over real algebras and the multi-signature of a mani-
fold. , Adv. Math. 23 (1977), 272-284. [Chapter IX]

[Li93] Z. Li, Every 3-manifold embeds in Y x Y x I where Y is a wedge of three
segments. Proc. Amer. Math. Soc., to appear.

[Li62] W. B. R. Lickorish, A representation of orientable combinatorial 3-
manifolds. Ann. of Math. (2) 76 (1962), 531-540. [Chapter VIII]



BIBLIOGRAPHY 397

[Li70] W. B. R. Lickorish, On collapsing X2 x I. Topology of Manifolds, ed. by
J. C. Cantrell and C. H. Edwards, 157-160, Markham Publishing Co.,
Chicago (1970). [Chapter XI]

[Li73] W. B. R. Lickorish, An improbable collapse. Topology 12 (1973), 5-8.
[Chapter XI]

[Lu911] M. Lustig, Nielsen Equivalence and Simple-Homotopy Type. Proc. London
Math. Soc. 62 (1991), 537-562. [Chapters I, VII, XIII

[Lu9121 M. Lustig, On the Rank, the Deficiency and the Homological Dimension of
Groups: The Computation of a Lower Bound via Fox Ideals. in: Topology
and Combinatorial Group Theory, Ed. P. Latiolais, Lecture Notes in Math.
1440 (1991), Springer Verlag, 164-174. [Chapter VII]

[Lu93] M. Lustig, Infinitely many pairwise homotopy inequivalent 2-complexes
IC; with fixed 1r1 (K1) and X(K;). University of Bochum, Germany (1993),
preprint. [Chapter III]

[LuMo9l] M. Lustig, Y. Moriah, Nielsen Equivalence in Fuchsian Groups and Seifert
Fibered Spaces. Topology 30 (1991), 191-204. [Chapter VII]

[LuMo92]

[LuMo931]

[LuMo932]

M. Lustig, and Y. Moriah, On the complexity of the Heegaard structure of
hyperbolic 3-manifolds. preprint (1992). [Chapter VII]

M. Lustig and Y. Moriah, Generalized Montesinos Knots, Tunnels and
N- Torsion. Math. Ann. 295 (1993), 167-189. [Chapter VII]

M. Lustig and Y. Moriah, Generating Systems for Groups and
Reidemeis ter-Whitehead Torsion. J. of Algebra 157 (1993), 170-198.
[Chapter VII]

[LuPr92] M. Lustig and V. Preusser, Relator identities in groups and stably free
modules. University of Bochum, Germany (1992), preprint. [Chapter III]

[Ly50] R.C. Lyndon, Cohomology theory of groups with a single defining relation.
Ann. of Math. (2) 52 (1950), 650-655. [Chapters V, X]

[Ly66] R. C. Lyndon, On Dehn's algorithm. Math. Ann. 166 (1966), 208-228.
[Chapters V, VI, X]

[LySc77] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory. Springer-
Verlag (1977). [Chapters I, XII]

[Ly90] I. G. Lysionok, On some algorithmic properties of hyperbolic groups.
Math. USSR Izvestiya 35 (1) (1990), 145-163. [Chapter VI]

[Ly92] I. G. Lysionok, The infinity of Burnside groups of exponent 2k for k > 13.
Uspekhi mat. nauk, 47 (1992), 201-212. [Chapter V]

[Ly93] I. G. Lysionok, Infinite Burnside groups of even exponent. preprint,
Steklov Institute, Moscow (1993). [Chapter V]



398 BIBLIOGRAPHY

[LyPr] I. G. Lysionok and S. J. Pride, The structure of the second homotopy mod-
ule of presentations of split extensions of groups. in preparation. [Chap-
ter V]

[MacL68] S. MacLane, Homology, Academic Press, 1968. [Chapters II, IV]

[MaWh50] S. MacLane and J. H. C. Whitehead, On the 3-type of a complex. Proc.
Nat. Acad. Sci. 36 (1950), 41-48. [Chapter II]

[Ma30] W. Magnus, Uber diskontinuierliche Gruppen mit einer definierenden Re-
lation. (Der Freiheitssatz). J. Reine Angew. Math. 163 (1930), 141-165.
[Chapter V]

[Ma54] A. A. Markov, Theory of algorithms, Trudy Mat. Inst. Steklov 42 (1955),
Moscow-Leningrad. [Chapter VI]

[Ma71] B. Maskit, On Poincare's Theorem for Fundamental Polygons. Adv. in
Math. 7 (1971), 219-230. [Chapter VIII]

[Ma67] W. S. Massey, Algebraic topology: An introduction. Harcourt, Brace &
World (1967). [Chapter I]

[Ma80] W. S. Massey, Singular Homology Theory. Springer-Verlag, New York,
1980. [Chapter II]

[Ma73] S. V. Matveev, Special spines of piecewise linear manifolds. Math. Sb. 92
(1973), n.134, 282-293. (Russian; English transl. in Math.USSR Sb. 21
(1973), 279-291. [Chapter XI]

[Ma871] S. V. Matveev, Transformations of special spines and the Zeeman Conjec-
ture. Izv. AN SSSR 51 (1987), n.5, 1104-1115. (Russian; English transl.
in Math. USSR Izvestiya 31 (1987), 423-434. [Chapter XI]

[Ma872] S. V. Matveev, Zeeman Conjecture for unthickenable special polyhedra
is equivalent to the Andrews-Curtis Conjecture. Sibirskii Matematicheskii
Zhurnal 28 (1987), n. 6 , 66-80. (Russian). [Chapters VIII, XI]

[Ma61] B. Mazur, A note on some contractible .¢-manifolds. Ann. of Math. 73
(1961), 221-228. [Chapter I]

[Me93] H. Meinert, A quantitative approach to bicombings. preprint, Frankfurt/M
(1993). [Chapter VI]

[Me83] W. W. Menasco, Polyhedra representation of link complements. Contem-
porary Math. 20 (1983), 305-325. [Chapter VIII]

[Me67] W. Metzler, Beispiele zu Unterteilungsfragen bei CW-und Simplizialcom-
plexen. ArCh. Math. 18 (1967), 513-519. [Chapter I]

[Me76] W. Metzler, Uber den Homotopietyp zweidimensionaler CW-Komplexe
und Elementartransformationen bei Darstellungen von Gruppen durch
Erzeugende und definierende Relationen. J. reine angew. Math. 285
(1976), 7-23. [Chapters I, XII]



BIBLIOGRAPHY 399

[Me791] W. Metzler, Aquivalenzklassen von Gruppenbeschreibungen, Identitaten
and einfacher Homotopietyp in niederen Dimensionen. Lond. Math. Soc.
Lecture Note Series 36 (1979), 291-326. [Chapters I, XII]

[Me792] W. Metzler, Two-dimensional complexes with torsion values not realizable
by self-equivalences. Lond. Math. Soc. Lecture Note Series 36 (1979), 327-
337. [Chapters I, XII]

[Me85] W. Metzler, On the Andrews-Curtis conjecture and related prob-
lems. Amer. Math. Soc.Contemp. Math. 44 (1985), 35-50. [Chap-
ters I, VIII, XI, XII]

[Me90] W. Metzler, Die Unterscheidung von Homotopietyp and einfachem Ho-
motopietyp bei zweidimensionalen Komplexen. J. reine angew. Math. 403
(1990), 201-219. [Chapters I, XII]

[Mi92] C. F. Miller III, Decision problems for groups - survey and reflections in:
Algorithms and classification in combinatorial group theory, G. Baumslag
and C.F. Miller III eds., Springer Verlag, Math. sci. res. inst. publ., 1992,
1, 3-59. [Chapter VI]

[MiSc79] C. F. Miller and P. E. Schupp, Letter to M.M.Cohen. (Oct. 1979). [Chap-
ter XII]

[Mi62] J. Milnor, A unique factorisation theorem for 3-manifolds. Amer. J. Math.
84 (1962), 1-7. [Chapter VIII]

[Mi57] J. Milnor, Groups which act on S" without fixed points. Amer. J. Math.
79 (1957), 623-630. [Chapter VIII]

[Mi71] J. Milnor, Introduction to Algebraic K-Theory. Ann. of Math. Study 72,
Princeton University Press (1971). [Chapter VII]

[MiSt74] J. W. Milnor and J. D. Stasheff, Characteristic classes. Princeton Uni-
versity Press, Annals of Math. Studies No. 76 (1974). [Chapter IX]

[MiPrRe86] W. J. It. Mitchell, J. Przytycki and D. Repovs, On spines of knot spaces.
Magdalen College, Cambridge U.K. et al. (1986), preprint. [Chapter I]

[Mo51] E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem
and Hauptvermutung. Ann. Of Math. (2) 56 (1952), 96-114CH8]

[Mo77] E. E. Moise, Geometric topology of dimensions 2 and 3. Springer-Verlag
(1977). [Chapter I]

[Mo74] J. M. Montesinos, A representation of closed, orientable 3-manifolds as 3-
fold branched coverings of S3. Bull. Amer. Math. Soc. 80 (1974), 531-540.
[Chapter VIII]

[Mo69] M. S. Montgomery, Left and right inverses in group algebras. Bull. Amer.
Math. Soc. 75 (1969), 539-540. [Chapters V, X]

[Mo90] L. Mooney, Massey Products in Groups, (Thesis, University of Oregon,
1990). [Chapters V, X]



400 BIBLIOGRAPHY

[MoSh93] Y. Moriah and V. Shpilrain, Non-tame automorphisms of extensions of
periodic groups, to appear in Israel J. Math. [Chapter VII]

[Mu60] J. R. Munkres, Obstructions to smoothing of piecewise differentiable home-
omorphisms. Ann. of Math. 72 (1960), 521-554. [Chapter I]

[Ne43] B. H. Neumann, Adjunction of elements to groups. J. London Math. Soc.
18 (1943), 4-11. [Chapters V, X]

[Ne49] B. H. Neumann, On ordered division rings. Trans. Amer. Math. Soc. 66
(1949), 202-252. [Chapters V, X]

[Ne68] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-
complexes. Proc.Camb. Phil. Soc. 64 (1968), 603-613. [Chapters I, VIII]

[Ne73] J.P. Neuzil, Embedding the dunce hat in S4. Topology 12 (1973), 411-415.
[Chapter I]

[Nil9] J. Nielsen, Uber die Isomorphismen unendlicher Gruppen ohne Relation.
Math. Ann. 79 (1919), 269-272. [Chapters I, XII]

[No55] P. S. Novikov, On the algorithmic unsolvability of the word problem in
group theory. Trudy Mat. Inst. Steklov 44 (1955), 143 (Russian). [Chap-
ter VI]

[0191] A. Y. 01'shanskii, The geometry of defining relations in groups. Kluwer
Academic Publishers (1991). [Chapters V, X]

[0165] P. Olum, Self-equivalences of pseudo-projective planes. Topology 4 (1965),
109-127. [Chapter II]

[Os78] R. P. Osborne, The simplest closed 3-manifolds. Pac. J. Math., 74 (1978),
481-495. [Chapter VIII]

[OsSt74] R. P. Osborne and R.S. Stevens, Group presentations corresponding to
spines of 3-manifolds I. American J. Math, 96 No. 3, (1977), 454-471.
[Chapters 1, VIII]

[OsSt77] R. P. Osborne and R. S. Stevens, Group presentations corresponding to
spines of 3-manifolds II. Trans. Amer. Math. Soc., 234 (1977), 213-243;
III, Trans. Amer. Math. Soc. 234 (1977), 245-251. [Chapter VIII]

[Pa57] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots.
Ann. of Math. 66 (1957), 1-26. [Chapters V, X]

[Pa63] C. D. Papakyriakopoulos, Attaching 2-dimensional cells to a complex.
Ann. Math. 78 (1963), 205-222. [Chapters II, IV, V, X]

[Pe49] R. Peiffer, Uber Identitdten zwischen Relationen. Math. Ann. 121 (1949),
76-99. [Chapters II, IV, V, X]

[Pe86] N. Perron. Pseudo-isotopies et isotopies en dimension quartre dans la cat-
egorie topologique. Topology 25, 381-397, (1986). [Chapter IX]



BIBLIOGRAPHY 401

[Pi88] R. Piergallini, Standard moves for standard polyhedra and spines. Supple-
mento ai Rendiconti del Circolo Matematico di Palermo Serie 11 (1988),
n. 18 , 391-414. [Chapter XI]

[Po04] H. Poincare, Cinquieme complement a l'analysis situs. Rend.Circ. Mat.
Palermo, 18 (1904), 45-110. [Chapter VIII]

[Pr87] S. J. Pride, Groups with presentations in which each defining relator in-
volves exactly two generators. J. London Math. Soc. (2) 36 (1987), 245-256.
[Chapters V, X]

[Pr88] S. J. Pride, Star-complexes, and the dependence problems for hyperbolic
complexes. Glasgow Math. J. 30 (1988), 155-170. [Chapters V, VI, X]

[Pr89] S. J. Pride, Involutary presentations, with applications to Coxeter groups,
NEC-groups and groups of Kanevskii. J. Algebra 120 (1989), 200-223.
[Chapters V, X]

[Pr91] S. J. Pride, Identities among relations of group presentations in: Group
theory from a geometrical viewpoint, Trieste 1990 (E. Ghys, A. Haefliger,
A Verjovsky, editors), World Scientific Publishing (1991), 687-717. [Chap-
ter IV, VI

[Pr921] S. J. Pride, The (co)homology of groups given by presentations in which
each defining realtor involves at most two types of generators. J. Austral.
Math. Soc. (Series A) 52 (1992), 205-218. [Chapter V]

[Pr922] S. J. Pride, Examples of presentations which are minimally Cockcroft in
several different ways. preprint, University of Glasgow. [Chapter IV, V]

[PrSt89] S. J. Pride and R. Stohr, Relation Modules of groups with presentations
in which each relator involves exactly two types of generators. J. London
Math. Soc. (2) 38 (1988), 99-111. (Chapter V]

[PrSt9O] S. J. Pride and R. Stohr, The (co)-homology of aspherical Coxeter groups.
J. London Math. Soc. (2) 42 (1990), 49-63. [Chapter V]

[Pu58] D. Puppe, Homotopiemengen and Ihre Induzieten Abbildungen I. Math.
Zeit. 69 (1958), 299-344. [Chapter III]

[Qu81] F. Quinn, Presentations and 2-complexes, fake surfaces and singular 3-
manifolds. Virginia Polytechnic Institute, Blackburg Va. (1981), preprint.
[Chapters I, VIII, XI, XII]

[Qu83] F. Quinn, The stable topology of .{-manifolds. Top. and its appl. 15 (1983),
71-77. [Chapter IX]

[Qu85] F. Quinn, Handlebodies and 2-complexes. Springer Lecture Notes in Math.
1167 (1985), 245-259. [Chapters I, XII]

[Ra681] E. S. Rapaport, Remarks on groups of order 1. Amer. Math. Monthly 75
(1968), 714-720. [Chapters I, XII]



402 BIBLIOGRAPHY

[Ra682] E. S. Rapaport, Groups of order 1, some properties of presentations. Acta
Math. 121 (1968), 127-150. [Chapters I, XII]

[Ra80] J. G. Ratcliffe, Free and projective crossed modules. J. London Math. Soc.
22 (1980), 66-74. [ Ch. IV, V]

[Ra83] J. G. Ratcliffe, Finiteness conditions for groups. J. Pure Appl. Algebra 27
(1983), 173-185. [Chapter X]

[Re32] K. Reidemeister, Einfiihrung in die kombinatorische Topologie. Vieweg
(1932). [Chapter I]

[Re33] K. Reidemeister, Zur dreidimensionalen Topologie. Abh. Math. Sem. Univ.
Hamburg 9 (1933), 189-194. [Chapter I]

[Re34] K. Reidemeister, Homotopiegruppen von Komplexen. Abh. Math. Sem.
Univ. Hamburg 10 (1934), 211-215. [Chapters II, V, X]

[Re35] K. Reidemeister, Homotopieringe and Linsenraiime, Abh. Math. Sem.
Univ. Hamburg 11 (1935), 102-109. [Chapters I, II]

[Re36] K. Reidemeister, Kommutative Fundamentalgruppen. Monatsh. Math.
Phys. 43 (1936), 20-28. [Chapter I]

[Re49] K. Reidemeister, Uber Identitaten von Relationen. Abh. Math. Sem Univ.
Hamburg, 16 (1949), 114-118. [Chapters II, IV, XII]

[Re50] K. Reidemeister, Complexes and homotopy chains. Bull. Amer. Math. Soc.
56 (1950), 297-307. [Chapters V, X]

[Res61] Y. G. Reshetnyak, On a special kind of mapping of a cone onto a polyhedral
disk. Math. Sbornik, V. 53 (95), 39-52 1961, engl. translation: J. Stallings,
UC Berkeley [Chapter VI]

[Ri82] E. Rips, Generalized small cancellation theory and applications. I, The
word problem. Isreal J. Math. 41 (1982), 1-146. [Chapters V, X]

[Ro176] D. Rolfsen, Knots and Links (Publish or Perish, 1976). [Chapter V]

[Ro90] S. Rosebrock, A reduced spherical diagram into a ribbon-disk complement
and related examples. in: Topology and Combinatorial Group Theory, M.
P. Latiolais, ed., Lecture Notes in Math. 1440 (Springer, 1990), 175-185.
(Chapters V, X]

[Ro91] S. Rosebrock, On the realization of Wirtinger presentations as knot groups,
(Preprint, J. W. Goethe Universitat-F!tankfurt, 1991). [Chapters V, VI, X]

[Rot76] O. S. Rothaus, On the non-triviality of some group extensions given by gen-
erators and relations. Bull. Amer. Math. Soc. 54 (1976), 284-286. [Chap-
ters I, V, X, 12]

[Rot77] O. S. Rothaus, On the non-triviality of some group extensions given
by generators and relations. Ann. Math. 106 (1977), 599-612. [Chap-
ters I, V, X, XII]



BIBLIOGRAPHY 403

[Ro73] J. J. Rotman, The theory of groups. Allyn and Bacon, Boston (1973).
[Chapter VI]

[Ro79] C. P. Rourke, Presentations of the trivial groups. in: Topology of Low
Dimensional Manifolds (R. Fenn, editor), Lecture Notes in Mathematics
722 (Springer, 1979), 134-143. [Chapter V]

[RoSa72] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topol-
ogy. Springer Verlag (1972). [Chapter I]

[Sche73] B. Schellenberg, On the self-equivalences of a space with non-cyclic fun-
damental group. Math. Ann. 205 (1973), 333-344. [Chapter II]

[Schu64] H. Schubert, Topology. Teubner (1964), English edition: Allyn and Bacon
(1968). [Chapter I]

[Se33] H. Seifert, Topologie dreidimensionaler gefaserter Raum, Acta Math. 60
(1933), 147-238, Translation by W. Heil, memo. notes, Florida State Uni-
versity (1976). [Chapter VII]

[SeTh45] H. Seifert and W. Threlfall, Lehrbuch der Topologie. Chelsea Publishing
Company (1945). [Chapter VIII]

[Se73] J. P. Serre, A course in arithmetic. Springer-Verlag, Berlin (1973). [Chap-
ter IX]

[Se80] J. P. Serre, Trees. Springer-Verlag, Berlin-Heidelberg-New York (1980).
[Chapter IV, V]

[Sh74] I. R. Shafarevic, Basic algebraic geometry. Springer-Verlag, Berlin (1974).
[Chapter IX]

[Sh81] H. Short, Topological Methods in Group Theory: The Adjunction Problem.
(Thesis, University of Warwick, 1981). [Chapters V, X]

[Sh90] H. Short, Groups and combings. preprint, ENS Lyon 1990. [Chapter VI]

[Sh91] H. Short, ed, Notes on word hyperbolic groups. in: Group theory from
a geometrical viewpoint, E. Ghys, A. Haefliger, A. Verjovsky, eds., 3-63,
World Scientific Publ., Singapore (1991). [Chapter VI]

[Si76] A. J. Sieradski, Combinatorial isomorphisms and combinatorial homotopy
equivalences, J. Pure Appl. Alg. 7 (1976), 59-95. [Chapter II]

[Si77] A. J. Sieradski, A semigroup of simple homotopy types. Math. Z. 153
(1977), 135-148. [Chapters II, III, VII, XII]

[Si80] A. J. Sieradski, Framed links for Peiffer identities. Math. Z. 175 (1980),
125-137. [Chapters V, X]

[Si81] A. J. Sieradski, A coloring test for asphericity. Quart. J. Math. Oxford
(2)34 (1983), 97-106. [Chapters V, X]

[Si84] A. J. Sieradski, A combinatorial interpretation of the third homology of a
group. J. Pure Appl. Algebra, 33 (1984), 81-96. [Chapter IV]



404 BIBLIOGRAPHY

[Si86] A. J. Sieradski, Combinatorial squashings, 3-manifolds, and the third ho-
mology of groups. Invent. Math. 84 (1986), 121-139. [Chapter VIII]

[Si92] A. J. Sieradski, An introduction to topology and homotopy. PWS-Kent
Publishing Company, Boston (1992). [Chapters I, II]

[SiDy79] A. J. Sieradski and M. L. Dyer. Distinguishing arithmetic for certain stably
isomorphic modules. J. Pure & Appl. Alg. 15 (1979), 199-217. [Chapter IX]

[Sil8l] J. R. Silvester, Introduction of Algebraic K- Theory Chapman and Hall
Ltd. (1981). [Chapter III]

[Si33] J. Singer, Three dimensional manifolds and the Heegaard diagrams. Trans.
Amer. Math. Soc. 35 (1933), 88-111. [Chapter I]

[So73] C. Soule, Groupes operant sur un complexe simplicial avec domaine fon-
damental. C.R. Acad. Sci. Series A 276 (1973), 607-609. [Chapter V]

[St59] J.R. Stallings, Grushko's theorem II: Kneser's conjecture. Notices of Amer.
Math. Soc. No. 559-165, 531-532 (1959) [Chapter VIII]

[St62] J.R. Stallings, On the recursiveness of sets of presentations of 3-manifold
groups. Find. Math. 51 (1962), 191-194. [Chapter I]

[St651] J.R. Stallings, A topological proof of Grushko's theorem on free products.
Math. Z. 90 (1965), 1-8. [Chapters I, XII]

[St652] J.R. Stallings, Whitehead Torsion of Free Products. Ann. of Math. 82
(1965), 354-363 [Chapter VIII

[St73] U. Stammbach, Homology in group theory. Springer-Verlag, New York
(1973). [Chapter IV]

[St82] P. Stefan, On Peiffer transformations, link diagrams, and a question of
J. H.C. Whitehead. in: Low-Dimensional Topology (R. Brown and T. L.
Thickstun, editors), London Math. Soc. Lecture Note Series 48 (1982),
203-213. [Chapters V, X]

[St75] It. S. Stevens, Classification of 3-manifolds with certain spines. Trans.
Amer. Math. Soc. 205 (1975), 151-166. [Chapter VIII]

[St80] J. Stillwell, Classical topology and combinatorial group theory. Springer
Verlag (1980). [Chapters I, VIII]

[Sti82] J. Stillwell, The word problem and the isomorphism problem for groups.
Bull. Amer. Math. Soc. (new series) 6 (1982), 33-56. [Chapter VI]

[St68] B. Stong, Notes on cobordism theory. Princeton University Press (1968).
[Chapter IX]

[St74] R. Strebel, Homological methods applied to the derived series of groups.
Comment. Math. Helv. 49 (1974), 302-322. [Chapter IV, V, X]

[Sw65] It. G. Swan, Minimal resolutions for finite groups. Topology 4 (1965),
193-208 [Chapter VII]



BIBLIOGRAPHY 405

[Sw70] R. G. Swan, K- Theory of Finite Groups and Orders. Springer Lecture
Notes in Math 149 (1970). [Chapterlll]

[Sw73] G. A. Swarup, On embedded spheres in 3-manifolds. Math. Ann. 203
(1973), 89-102. [Chapter VIII]

[Sw74] G. A. Swarup, On a theorem of C. B. Thomas. J. London Math. Soc. (2)
8 (1974), 13-21. [Chapter VIII]

[Ta91] M. Takahashi, Framed-link representations of 3-manifolds. Tsukuba J.
Math., 15 (1991), 79-83. [Chapter VIII]

[Th54] R. Thom, Quelques proprietes des varietes differentiables. Comment.
Math. Helv. 28 (1954), 17-86. [Chapter IX]

[Th67] C. B. Thomas, The oriented homotopy type of compact 3-manifolds. Proc.
London Math. Soc., 19 (1967), 31-44. [Chapter VIII]

[Th78] C. B. Thomas, Free actions by finite groups on S3. Proc. Sympos. Pure
Math. No. 32, Part I (American Mathathematical Society, Providence,
R.I.) (1978), 125-130. [Chapter VIII]

[Th79] C. B. Thomas, On 3-manifolds with finite solvable fundamental group.
Invent. Math. 52 (1979), 187-197. [Chapter VIII]

[Ti08] H. Tietze, Uber die topologischen Invarianten mehrdimensionaler Mannig-
faltigkeiten. Monatsh. Math. Phys. 19 (1908), 1-118. [Chapters I, II]

[Tu88] V. G. Turaev, Towards the topological classification of geometric 3-
manifolds. Topology and geometry-Rohlin Seminar, Lecture Notes in
Math. 1346 (1988), 291-323. [Chapter VIII]

[Tur37] A. M. Turing, On computable numbers with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. (2) 42, 230-265, 1936, A correction,
Proc. Lond. Math. Soc. (2) 43 (1937), 544-546. [Chapter VI]

[Wa80] J. Wagoner, A picture description of the boundary map in algebraic K-
theory. Lect. Notes in Math. 966 (1980), 362-389. [Chapter V]

[Wa68] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large.
Ann. of Math. 87 (1968), 56-88. [Chapter VIII]

[Wa78] F. Waldhausen, Algebraic K-theory of generalized free products I, II. Ann.
of Math. 108 (1978), 135-256. [Chapter VIII

[Wa65] C. T. C. Wall, Finiteness conditions for CW-complexes. Ann. of Math. 81
(1965), 56-69. [Chapter III]

[Wa66] C. T. C. Wall, Formal deformations. Proc. London Math. Soc. 16 (1966),
342-354. [Chapters I, XI, XII]

[Wa70] C. T. C. Wall, Surgery on Compact Manifolds. Academic Press, New York
(1970). [Chapter IX)



406 BIBLIOGRAPHY

[Wa76] C. T. C. Wall, Classification of hermitian forms VI. Group rings. Annals
of Math. 103 (1975), 1-80. [Chapter IX]

[Wa79] C. T. C. Wall, List of problems. Lond. Math. Soc. Lecture Note Series 36
(1979), 369-394. [Chapters I, XII]

[Wa80] C. T. C. Wall, Relatively 1-dimensional complexes. Math. Z. 172 (1980),
77-79. [Chapters I, XII]

[Wa60] A. H. Wallace, Modifications and cobounding manifolds. Canad. J. Math.
12 (1960), 503-528. [Chapter VIII]

[We67] C. Weber, Plongements de polyedra dans le domaine metastable. Comm.
Math. Helv. 42 (1967), 1-27. [Chapter I]

[WeSe33] C. Weber and W. Seifert, Die beiden Dodekaderraume. Math. Z. 37 (1933),
237-253. [Chapter VIII]

[We73] D. E. Webster, Collapsing K x I. Proc.Cambridge Phil. Soc. 74 (1973),
39 - 42. [Chapter XI]

[WeWa78] D. E. Webster, L. W. Wajda, On Zeeman's Conjecture. The collapsing of
K(2, q, r, s) x I. Manuscript, 1978. [Chapter XI]

[We71] J. E. West, Mapping cylinders of Hilber cube factors. General Top. and its
Appl. 1 (1971), 111-125. [Chapter I]

[Wh36] J. H. C. Whitehead, On certain sets of elements in a free group. Proc.
London Math.Soc. (2) 41 (1936), 48-56. [Chapter XI]

[Wh39] J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups. Proc. London
Math. Soc. 45 (1939), 243-327. [Chapters I, Chs. II, X]

[Wh411] J. H. C. Whitehead, On adding relations to homotopy groups. Ann. of
Math. 42 (1941), 409-428. [Chapters I, IV, X]

[Wh412] J. H. C. Whitehead, On incidence matrices, nuclei and homotopy types.
Ann. of Math. 42 (1941), 1197-1239. [Chapters I, VIII, XII]

[Wh46] J. H. C. Whitehead, Note on a previous paper entitled "On adding relations
to homotopy groups. " Ann. Math. 47 (1946), 806-810. [Chapters V, X]

[Wh48] J. H. C. Whitehead, On the homotopy type of ANR's. Bull. Amer. Math.
Soc. 54 (1948), 1133-1145. [Chapter II]

[Wh491] J. H. C. Whitehead, Combinatorial homotopy I. Bull. Amer. Math. Soc.
55 (1949), 213-245. [Chapters I, II]

[Wh492] J. H. C. Whitehead, Combinatorial homotopy II. Bull. Amer. Math. Soc.
55 (1949), 453-496. [Chapters II, X]

[Wh50] J. H. C. Whitehead, Simple homotopy types. Amer. J. Math. 72 (1950),
1-57. [Chapters I, XII]



BIBLIOGRAPHY 407

[Wi90] D. M. Wilczynzski, On the topological rigidity of pseudo-free group actions
on 4-manifolds I. preprint (1990). [Chapter IX]

[Wo91] A. R. Wolf, Inherited asphericity, links and identities among relations. J.
Pure Appl. Alg. 71 (1991), 99-107. [Chapters V, X]

[Wr71] P. Wright, Collapsing K x I to a vertical segments. Proc.Camb. Phil. Soc.
69 (1971), 71-74. [Chapter XI]

[Wr73] P. Wright, Formal 3-deformations of 2-polyhedra. Proc. Amer. Math. Soc.
37 (1973), 305-308. [Chapters I, XI, XII]

[Wr75] P. Wright, Group presentations and formal deformations. Trans. Amer.
Math. Soc. 208 (1975), 161-169. [Chapters I, XI, XII]

[Wr77] P. Wright, Covering 2-dimensional polyhedra by 3-manifold spines. Topol-
ogy 16 (1977), 435-439. [Chapters I, XII]

[Yo76] S. F. Young, Contractible 2-complexes. Christ's College, University of
Cambridge U.K., preprint (1976). [Chapters I, XII]

[Ze63-66] E. C. Zeeman, Seminar on combinatorial topology. I.H.E.S.-Notes, Paris
and: University of Warwick, Coventry U.K. (1963-1966). [Chapter I]

[Ze641] E. C. Zeeman, On the dunce hat. Topology 2 (1964), 341-358. [Chap-
ters I, XI]

[Ze642] E. C. Zeeman, Relative simplicial approximations. Proc.Camb. Phil. Soc.
60 (1964), 39-42. [Chapter II]

[Zi81] H. Zieschang, Finite groups of mapping classes of surfaces. Lecture Notes

in Mathematics, 875, Springer-Verlag, Berlin-New York, 1981. [Chap-
ter VIII]

[Zi88] H. Zieschang, On Heegaard diagrams of 3-manifolds. Asterisque No.
163/164 (1988), 247-280. [Chapters VII, VIII]

[Zi78] A. Zimmermann, Eine spezielle Klasse kollabierbarer Komplexe K2 X I.
Thesis, Frankfurt/Main (1978). [Chapter XI]



Index

a-homotopy, 62
Ed(K), 101
1-collapsibility modulo 2-expansions,

348
1-collapsible, 335
2-bridge knot, 243
2-expansions, 348
3-deformation, 376
3-deformation type, 22, 28, 122
C(K), equivariant chain complex, 80
C(P)-chain complex, 84
CM, CMG, PCM, PCMg, 127

Abalone, 336
absolutely Cockcroft, 155

action of the cohomology group, 95
acyclic complex, 322, 326
algebraic 2-type, 92
algebraic normal 1-type, 287
algorithm, 190
Andrews-Curtis conjecture, 21, 45, 47,

319
articulation point, 347
aspherical, 48, 90, 167, 273, 309
aspherical presentation, 148
asphericity, combinatorial (CA), 167,

174
asphericity, diagrammatic (DA), 171,

332
attaching map, 2, 11, 13

balanced presentation, 8, 259
barycentric subdivision, 52
based map, 62
based space, 62
basic Peiffer element, 67
basis-up-to-conjugation, 343
bias, 97, 104, 246

bicombing, 199
Bing's house, 19, 336
bordism group, 288
bored manifold, 280
boundary of a cell, 2
boundary point, 274
bounded combing, 199
braid, 240
branched covering, 252
branched surface, 352
branched surface structure, 353
Browning obstruction, 113
Burau representation, 240
Burnside group, 182

"can't start"-argument, 18, 20, 338
category, CMG, PCM, PCMg, 127
category, crossed modules CM, 127
cell complex, 1
cellular chain complex, 76
cellular homeomorphism, 2
cellular homology group, 77
centralizer, 332
chain complex C(P), 84
chain complex, cellular, 76
change of ring procedure, 80
characteristic map, 11, 25
Chern manifold, 300
Cockcroft, 148, 154, 312, 315
Cockcroft, absolutely, 155
Cockcroft threshold, 155
cohomological dimension, 329
cohomology of a group, 89
collapse, 12, 31
collapsible, 17, 20, 43, 280, 338, 361
collapsing by adding a cell, 339
combinatorial approximation, 57
combinatorial complex, 9, 10, 57
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combinatorial equivalence, 5, 6
combinatorial map, 57
combinatorial map (strong sense), 203
combinatorially aspherical (CA), 167,

174
combinatorially reducible (CR), 170
combing, 199
comparison theorem, 88
complement of a picture, 161
conjugacy problem, 189
conservative group, 322
conservative radical, 323
contractible, 8, 17, 47
Coxeter group, 227
crossed commutator, 129
crossed extension, 132
crossed module, 66, 125
crossed module homomorphism, 66, 127
crossed module, coproduct, 140
crossed module, direct sum, 143
crossed module, free, 71, 127
crossed module, projective, 132
curtain system, 61
curvature, 158, 188
CW-complex, 2
cycle, 203
cycletest, 206

decidable, 190
deficiency (=directed deficiency), 28,

152, 227, 374
defining relation, 7, 60
deformation, 12, 45
Dehn algorithm, 172, 191
Dehn function, 195
diagrammatically aspherical (DA), 171,

332
diagrammatically reducible (DR), 171
dipole, 169
direct sum formula, 232
direct sum map, 143
directed deficiency, see: deficiency
dodecahedral space, hyperbolic, 255
dodecahedral space, spherical, 255
dunce hat, 18, 40, 258, 336
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efficient, 228, 229
efficient group, 152
efficient normal factorization, 317
efficient presentation, 152
Eichler's condition, 111
elementary automorphism, 283
elementary collapse, 12
elementary expansion, 12
equations over groups, 171, 321, 334
equivariant bicombing, 199
equivariant cellular chain complex, 80
equivariant map, 80
Euler characteristic, 8, 28, 222
expanded presentation, 73, 87
expansion, 12

fake surface, 10, 350
fibered cell, 256
Fox ideal, 149, 220, 222
Fox-Reidemeister derivative, 85
framed link, 61, 68, 330
framing curve, 41
free crossed module, 71, 127
free differential calculus, 85
free face, 12, 23
free pre-crossed module, 128
free product, 232, 235, 248
Fuchsian group, 237
fundamental class CM, 268
fundamental group, 7, 40
fundamental sequence for K, 63
fundamental sequence for P, 68

(G, d)-complex, 99, 149
G-crossed module, 66, 126
G-morphism, 127
generalized Andrews-Curtis conjecture,

45
generalized dunce hat, 43
generalized prolongation, 22
generalized Zeeman conjecture, 48
generator of a presentation, 7, 60
geodesic path, 197
geometric 3-manifold, 273
geometric normal 1-type, 287
geometrically split, 332
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graph of groups, 179
group of identities, 67, 127, 368
group presentation, 7, 60, 262
group, perfect, 136
group, Rosset, 149
group, superperfect, 134, 136

Haken manifold, 273
handle decomposition, 257
handlebody, 30, 32, 41
Hauptvermutung, see: combinatorial

equivalence
Heegaard splitting, 238, 252, 262
Heegaard-diagram, 32
highway system, 59
homological dimension, 229
homology 3-ball, 337
homology equivalence, 105
homology of a group, 89
homomorphism, crossed module, 127
homotopy action, 62
homotopy equivalence test, 246
homotopy module, 157
homotopy type, 28, 122, 375
Hopf's formula, 91
house with one room, 336
Hurewicz's Theorems, 77
hyperbolic dodecahedral space, 255

identifiable cells, 256
identity, 67
identity property, 139
identity property, left, 148
identity property, right, 148
incidence number, 76
inner point, 274
interval presentation, 209
intrinsic skeleta, 10
isodiametric function, 197
isoperimetric function, 195
isoperimetric inequality, 196

k-invariant, 92
knot, 320
knot space, 35

labeled oriented graph, 319, 333

INDEX

L-Cockcroft complex, 148, 149
left identity property, 148
lens space, 35
L-identity property, 148
link graph (= Whitehead graph), 33,

170, 203
localization, 111, 122
locally finite group, 321
locally indicable, 333, 334
locally indicable group, 322
locally nonperfect, 326, 334
locally residually finite, 321, 334
lower central series, 317, 319

Mac Lane-Whitehead theory, 91
manifold of dimension five, 43
manifold of dimension four, 43, 281
manifold of dimension three, 31, 40
map bias, 103, 104
maximal tower lifting, 327
Mazur-manifold, 42, 44
minimal subgroup, 154
model of a presentation, 61; see: stan-

dard complex
Montesinos knot, 243
morphism, crossed module, 66
moves of special polyhedra, 274, 350

n-collapsible polyhedron, 361
n-generating, 179
Nielsen equivalence, 233, 234
Non-Euclidean crystallographic group,

226
normal 1-smoothing, 288
normal 1-type, see: geometric normal

1-type
normal form in a group, 191
normal orientation, 355
N-torsion, 230, 231, 234, 246
null-H2 threshold, 156
null-homotopy, 70, 330

one-relator product, 185
ordinary cycle, 210
orientation of a fake surface, 351
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oriented branched surface structure,

353

paired identity, 261
partial homotopy equivalence, 118
patterns of contact, 253
Peiffer central series, 372
Peiffer element, 67, 127, 128, 368, 372
Peiffer group, 67, 127, 368
Peiffer identity, 371
pentagulation, 253
perfect group, 136, 324, 334
perfect radical, 325
picture, 158, 160
piecewise Euclidean, 212
pin-cushion, 258
PLCW-complex, 8, 14, 15, 24, 343
Poincare conjecture, 45, 47
pre-crossed module, 66, 127, 371
pre-crossed module, free, 128
presentation, 7, 60, 262
presentation class, see: Q**-class
presentation morphism, 368, 369
presentation, efficient, 152
prime 3-manifold, 272
prime factorization, 272
prismatically (1-) collapsible, 343
product cell, 57, 256
projective crossed module, 132, 134
prolongation, 21
proper power in G, 312
pseudo-projective plane, 85

Q**-class, 8, 21, 22, 26, 29, 39, 372
Q**-transformation, 21
Q**-trivialization, 365
Q*-transformation, 21
Q-equivalence, 369
Q-transformation, 21
quadratic A-module, 291
quasi isometric, 195

railroad-system (RR-system) , 263, 266
rank, 225
rank test, 226
rank, (A, Z)-free, 282

411

rank, (A, 7G)-hyperbolic, 291
recurrent arc, 267
recursive, 190
recursive presentation, 190
reducible 2-complex, 313
regular neighbourhood, 30, 43
Reidemeister complex, see: combina-

torial complex
Reidemeister-Fox derivative, 85
relation module, 50
relative barycentric subdivision, 53
relative generalized Andrews-Curtis con-

jecture, 46
relator of a presentation, 7, 60
residually nilpotent, 319, 333
resolution of module, 88
ribbon disc, 320, 333
right identity property, 148
Rosset group, 149
RR-system, 263, 266

second homotopy module, 157
Seifert fibre space, 239
semisplit presentation, 373
semisplit Q**-transformation, 377
sides of a hyperspace, 55
sign of an ordered simplex, 55
simple-homotopy, 246, 248, 249
simple-homotopy equivalence test, 248
simple-homotopy extension, 14
simple-homotopy type, 12, 16, 17, 28,

122, 370, 376
simplicial approximation, 52
simplicial approximation theorem, 53
simplicial curtain, 56
simplicial linkage, 54
singular 3-manifold, 39, 274, 372
singular point, 274
skeleton, 1
space form, 272
spanning tree, 7
special polyhedron, 10, 20, 36, 38, 274,

350
special spine, 38, 274
spherical dodecahedral space, 255
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spherical modification, 82
spine, 12, 17, 47, 253
split extension, 181
squashable complex, 256
squashing, 258, 260
squashing map, 256
stable range, 281
stably diffeomorphic, 287
stably homeomorphic, 287
staggered 2-complex, 314
Stallings' Splitting Theorem, 270
standard complex, 9, 61
standard polyhedron, see: special poly-

hedron
star covering, 52
star graph, 170, 203
subdivision, 5, 8
superperfect group, 134, 136, 324
surgery, 252
syllable-decomposition, 264
syllable-reduced, 267
symmetrized presentation, 191

T-equivalent special polyhedra, 364
Tarski monster, 182
taut identity, 259
test for homotopy equivalence, 246
test for simple-homotopy equivalence,

248
thickenable, 358
thickening, 31, 257, 286
Tietze transformation, 28
torsion of a map or a matrix, 112
tower, 315, 326
transient move, 14, 23, 367
transvection, 291
triangulation, 252
triple torus, 254
trivial presentation, 29
twisted presentation, 108
type FL, 329

unimodular element, 283
universal link, 252
unthickenable, 358

INDEX

vacuum sealing, 257
van Kampen diagram, 193
vertex star, 52
vertical resolution, 343

w2-type, 295
weak identity property, 152
weak topology, 2, 3
weight function, 203
weight of a subgroup, 149
weight test, 170, 205
Whitehead asphericity conjecture, 48,

309
Whitehead graph (= link graph), 33,

170, 203
Whitehead group, 16, 49, 230
Whitehead's Theorem, 74
Wirtinger presentation, 209
word hyperbolic, 197
word metric, 193
word problem, 189

Z-covering, 327
Zeeman's conjecture, 47, 335
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